Application of statistical methods with exponential smoothing double and triple for demand forecasting in the inventory management
DOI:
https://doi.org/10.14488/1676-1901.v19i3.3539Keywords:
Statistical methods. Exponential smoothing. Forecasting. Inventory management.Abstract
The statistical methods with double and triple exponential smoothing widely used to model significant trends in non-stationary time series data are applied in this work to obtain short-term forecasts for the planning of the demand of the productive process in a metallurgical industry of the north of Santa Catarina. The main objective of the application of such methods is to establish demand forecasting in order to anticipate future sales scenarios in two categories of products and obtain the best utilization of productive capacity through adequate inventory management to reduce risks in the process decision-making in this industry. The results obtained with the appropriate selection of the predictive methods with exponential smoothing, object of study of this work, were fundamental for the analyst of the system of forecast of demand to direct special attention to the degree of accuracy that integrated to an efficient inventory management policy was responsible per minimizing the effects of variability and operational costs, as well as contribute to the improvement of service levels and the consequent increase in the profitability of the industry involved.Downloads
References
BERMÚDEZ, J.D.; SEGURA, J.V.; VERCHER, E. SIOPRED: a prediction and optimization integrated system for demand. TOP, v.16, n.2, p. 258–271, feb. 2008. https://doi.org/10.1007/s11750-008-0042-7
BILLAH, B.; KING, M.L.; SNYDER, R.D.; KOEHLER, A.B. Exponential smoothing model selection for forecasting. International Journal of Forecasting, v.22, n.2, p. 239-247, jun.2006. https://doi.org/10.1016/j.ijforecast.2005.08.002
BOWERSOX, D.J.; CLOSS, D.J.; COOPER, M.B.; BOWERSOX, J.C. Gestão logística da cadeia de suprimentos. 4. ed. Porto Alegre: AMGH, 2014.
BROWN, R.G. Statistical forecasting for inventory control. New York: McGraw-Hill, 1959.
COELHO, L. C. Utilização de modelos de suavização exponencial para previsão de demanda com gráficos de controle combinados Shewhart-CUSUM. 121p. Dissertação (Mestrado) - Universidade Federal de Santa Catarina, Florianópolis, 2008.
COELHO, L. C. Flexibility and Consistency in Inventory-Routing. 183 p.
Canadá: Thèse (Doctorat) - Hec Montréal, Affiliée à L’Université de Montréal, 2012.
COELHO, L.C. Gestão e previsão da demanda. In: CALLEGARI COELHO, Leandro. Logística Descomplicada: demanda, gestão, logística, previsão. Québec, Canadá: Université Laval, Disponível em: https://www.logisticadescomplicada.com/gestao-previsao-demanda/. Acesso em: 10 dez. 2018.
COELHO, L.C.; LAPORT, G. The exact solution of several classes of inventory-routing problems. Computers & Operations Research, v.40, n.2, p.558-565,
feb. 2013. https://doi.org/10.1016/j.cor.2012.08.012
COUTO & ESPÍRITO SANTO, A gestão de estoques baseada na previsão de demanda: um estudo em um jogo de empresas. Revista LAGOS - UFF, Volta
Redonda, v. 4, n.2, p.83-96, Abr.2013. https://doi.org/10.1002/ad.1562
Disponível em: http://www.revistalagos.uff.br/index.php/lagos/article/view/231
CRUZ, A.C., AMARAL, C.E.; ALVES, C. C., HENNING, E.; CORAZZA, E.J. Avaliação e Monitoramento do Desempenho de Modelos de Previsão, IV Congresso Brasileiro de Engenharia de Produção, Anais COMBREPRO 2014, Ponta Grossa: APREPRO, 2014.
Disponível em: http://www.aprepro.org.br/conbrepro/2014/anais/artigos/eng%20q/2.pdf
Acesso em: 18 de dezembro de 2018.
GARCÍA-DÍAZ, J.C. Predición en el dominio del tiempo: analisis de series temporales para ingenieros.1. ed. España: Editorial Universitat Politècnica de València, 2016.
GARDNER E.S. Jr. Exponential Smoothing: The State of the Art. Journal of Forecasting, v.4, p.1-28, 1985. https://doi.org/10.1002/for.3980040103
Disponível em: https://www.bauer.uh.edu/gardner/docs/pdf/Exp-Sm-1985.pdf
GARDNER E.S. 2006. Exponential Smoothing: The State of the Art - Part II. International Journal of Forecasting, v.22, n.4, p. 637-666, 2006. https://doi.org/10.1016/j.ijforecast.2006.03.005
GELPER, S.; FRIED, R.; CROUX, C. Robust forecasting with exponential and Holt-Winters smoothing. Journal of Forecasting, v.29, 285-300, 2010. https://doi.org/10.1002/for.1125
Disponível em: https://pure.tue.nl/ws/portalfiles/portal/3954158/671965904247136.pdf
HEIZER, J.H, RENDER, B. and MUNSON, C. Operations management: sustainability and supply chain management, 12th edition, Boston Pearson, 2017.
HYNDMAN, R.J. & ATHANASOPOULOS, G. Forecasting: principles and practice, otexts. Disponível em: https://www.otexts.org/book/fpp. Austrália: University of Western Australia, 2018.
HOLT, C.E. Forecasting trends and seasonal by exponentially weighted averages. ONR Memorandum, v.52, Carnegie Institute of Technology, Pittsburgh, USA,1957.
JUÁREZ, A.C.; ZUÑIGA,C.A.; FLORES, L.M.; PARTIDA, D.S. Análisis de series de tiempo en el pronóstico de la demanda de almacenamiento de productos perecederos. Estudios Gerenciales, 32, 387-396, 2016. https://doi.org/10.1016/j.estger.2016.11.002
Disponível em: https://www.redalyc.org/articulo.oa?id=21251783011
KRAJEWSKI, L.J.; MALHOTRA, M.K.; RITZMAN, L.P. Operations Management: processes and supply chains plus, 11th Edition, Prentice Hall, Upper Saddle River, 2015.
LÓPEZ, J.A.; MENDOZA, A.; MASINI, J. A Classic and effective approach to
inventory management, International Journal of Industrial Engineering, v. 20, n. 5/6, p.372-386, 2013.
MAKRIDAKIS, S.; WHEELWRIGHT; S.; HYNDMAN, R.J. Forecasting methods and applications. 3rd ed., Wiley India Pvt. Limited, 2008.
MONTGOMERY, D.C.; JENNINGS, C.L.; KULAHCI, M. 2016. Introduction to time series analysis and forecasting, Edition 2th, John Wiley & Sons, 2016.
PELLEGRINI, F.R. & FOLIATTO, F.S. Passos para Implantação de Sistemas de Previsão de Demanda -Técnicas e Estudo de Caso. Revista Produção, v.11, n.1 p.43-64, nov. 2001. https://doi.org/10.1590/S0103-65132001000100004 Disponível em: Disponível em: http://www.scielo.br/pdf/prod/v11n1/v11n1a04
PINEDA, D.E.S. and TORRES, N.R. Inventory management model design in a strawberry crop, based on the model order for a single period and six sigma metrics, Ingeniería y Competitividad, vol.1, n.1, p.95-105, 2018. Disponível em:
Disponível em: http://www.scielo.org.co/pdf/inco/v20n1/0123-3033-inco-20-01-00095.pdf
MORETTIN, P. A. & TOLOI, C. M. Análise de séries temporais. 2. ed., Editora Edgard Blucher, 2006.
RAGSDALE, C. Spreadsheet modeling and decision analysis: a practical
introduction to business analytics. Cengage Learning, 8th edition, 2017.
RASMUSSEN, R. On time series data and optimal parameters. Omega, 32, 111-120,
https://doi.org/10.1016/j.omega.2003.09.013. Disponível em: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.530.8034&rep=rep1&type=pdf
SINGH, H., BAHL, A. & KUMAR, A. Application of time-series demand forecasting models with seasonality and trend components for industrial products. International Journal of Mechanical Engineering and Technology (IJMET), v.8, n.7, p.1599-1606, 2017. Disponível em:
https://www.iaeme.com/MasterAdmin/uploadfolder/IJMET_08_07_176/IJMET_08_07_176.pdf
SOUZA, G.P.; SAMOHYL, R.W. & MIRANDA, R.G. Métodos simplificados de previsão empresarial. Editora Ciência Moderna, 2008.
VARGAS, E.J.; BACCIN, B.; SELLITTO, M.A. Análise integrada para a tomada de decisão: os efeitos da modelagem no gerenciamento de estoques e o impacto sobre o indicador de rentabilidade ROI. Revista Produção Online, v.17, n.1, p. 325-350, jan./mar., 2017. https://doi.org/10.14488/1676-1901.v17i1.2556. Disponível em: https://producaoonline.org.br/rpo/article/view/2556
VERÍSSIMO, A. J., ALVES, C. C., HENNING, E., AMARAL, C.E. & CRUZ, A.C. Métodos Estatísticos de Suavização Exponencial Holt-Winters para Previsão de Demanda em uma Empresa do Setor Metal Mecânico - Gestão Industrial, 8, p.154-171, 2012. https://doi.org/10.3895/S1808-04482012000400009. Disponível em: https://periodicos.utfpr.edu.br/revistagi/article/view/1378/922
WINTERS, P. R. Forecasting sales by exponentially weighted moving averages - Management Science, v.6, n.3, p.324-342, 1960. https://doi.org/10.1287/mnsc.6.3.324
YORK, J.C. Evaluating the performance and accuracy of forecasting incident rates for mining operations. 189 p. Dissertation (Master), Pennsylvania State University, Graduate School College of Earth and Mineral Sciences, 2015.
Published
How to Cite
Issue
Section
License
The Journal reserves the right to make spelling and grammatical changes, aiming to keep a default language, respecting, however, the style of the authors.
The published work is responsibility of the (s) author (s), while the Revista Produção Online is only responsible for the evaluation of the paper. The Revista Produção Online is not responsible for any violations of Law No. 9.610 / 1998, the Copyright Act.
The journal allows the authors to keep the copyright of accepted articles, without restrictions
This work is licensed under a Creative Commons License .