Proposta de modelo de planejamento, projeto e execução para aprimorar a construção civil com apoio das tecnologias digitais

Autores

  • Douglas Bianchi Hartz Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS, Brasil.
  • Miriam Borchardt Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS, Brasil. https://orcid.org/0000-0002-8319-3690
  • Carlos Fernando Jung Faculdades Integradas de Taquara (FACCAT), Taquara, RS, Brasil. https://orcid.org/0000-0002-6317-8338

DOI:

https://doi.org/10.14488/1676-1901.v23i3.5126

Palavras-chave:

falha nos controles, construção 4.0, modelos utilizados, proposta de modelo, tecnologias digitais

Resumo

As falhas nos controles de custos e prazos na construção civil podem ocasionar atrasos na entrega de obras, gastos excedentes, além da insatisfação do cliente e até mesmo prejuízos financeiros incalculáveis. Parte destes problemas se dá a falta de dados históricos, falta de inserção de tecnologia nos processos, muitas vezes pela dificuldade de aceitação e adaptação de novas tecnologias e processo. O presente trabalho investigou as lacunas existentes para que o avanço da chamada Construção 4.0. A pesquisa utilizou o método de estudo qualitativo e investigatório, ocorrendo através de estudo teórico, pesquisa com profissionais da área, além de considerar o conhecimento prático do pesquisador. Os resultados contribuíram para que fosse possível identificar os modelos utilizados por outras construtoras, identificar as necessidades atuais, além de identificar as tecnologias digitais que podem ser inseridas nos processos a fim de resultar na proposta de um modelo de planejamento, projeto e execução para aprimorar a construção civil com o apoio das tecnologias digitais.

 

Downloads

Não há dados estatísticos.

Biografia do Autor

Douglas Bianchi Hartz, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS, Brasil.

Possui graduação em Engenharia de Produção pela FACCAT (2010), Especialização em Qualidade de Produtos e Processos pela FEEVALE (2013), MBA em Gerenciamento de Projetos pela UNISINOS (2015) e  mestrado em Engenharia de Produção e Sistemas pela UNISINOS (2024). Atualmente é Diretor de Planejamento da Construarte Engenharia e Construção. 

Miriam Borchardt, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS, Brasil.

Possui graduação em Engenharia Mecânica pela Universidade Federal do Rio Grande do Sul (1985), mestrado em Engenharia de Produção pela Universidade Federal do Rio Grande do Sul (1999) e doutorado em Engenharia de Produção pela Universidade Federal de Santa Catarina (2005). Atualmente é professora titular da Universidade do Vale do Rio dos Sinos atuando no Programa de Pós-Graduação em Engenharia de Produção e Sistemas. Tem experiência na área de Engenharia de Produção, com ênfase em operações de manufatura e de serviços incluindo negócios com impacto socioambiental, sistemas da qualidade, sustentabilidade organizacional e desenvolvimento sustentável.

Carlos Fernando Jung, Faculdades Integradas de Taquara (FACCAT), Taquara, RS, Brasil.

Pós-Doutorado em Engenharia (Projetos de Engenharia) pelo PPGEP/UFRGS, Doutor em Engenharia de Produção (Área de concentração: Sistemas da Qualidade) pelo PPGEP/UFRGS, Mestre em Engenharia de Produção (Área de concentração: Projeto de Produto) pelo PPGEP/UFSM; Graduado em Eletrônica pela UNISINOS. É Coordenador e Professor dos Cursos de Engenharia de Produção (2000-Atual) e Superior de Tecnologia em Gestão da Qualidade (2010-Atual) das Faculdades Integradas de Taquara - FACCAT. Tem experiência de 20 anos (1980-2000) na área de pesquisa e desenvolvimento (PD) e produção industrial de equipamentos eletrônicos. Gestor do Pólo de Inovação Tecnológica do Paranhana/Encosta de Serra - Programa de Pólos Tecnológicos da Secretaria da Ciência e Tecnologia do RS (2001-2019). Professor/Pesquisador do Mestrado Acadêmico em Desenvolvimento Regional das Faculdades Integradas de Taquara - FACCAT (2013-Atual). Consultor - Área 9 - Produção - Secretaria da Ciência e Tecnologia do RS (2013-2015). Membro do CAA - Comitê Assessor de Área: Tecnologia em Gestão da Qualidade - INEP/MEC (2018-2020) nomeado pela Portaria N 151 de 05/03/2018. Diretor Científico (2018-2020) e Diretor da Regiao Sul (2020-Atual) da BRAMON - Rede Brasileira de Monitoramento de Meteoros. Proprietário e Pesquisador do Observatório Espacial Heller Jung (2016-Atual). Conselheiro Fiscal - Conselho Comunitário Pró Segurança Pública, Taquara, RS (2022-Atual). CONSULTOR AD HOC - Secretaria da Inovação, Ciência e Desenvolvimento Tecnológico do RS - Edital SICT 02/2023.

Referências

BULAT, A. G. TZIMIROPOULOS. How far are we from solving the 2D & 3D face alignment problem? Proc. IEEE Int. Conf. Comput. Vis., p. 1021–1030, 2017. Disponível em: https://doi.org/10.1109/ ICCV.2017.116.

ABUALDENIEN, J., BORRMANN, A. Levels of detail, development, definition, and information need: a critical literature review. Journal of Information Technology in Construction, v. 27, Special issue The Eastman Symposium p. 363-392, 2022. Disponível em: https://doi.org/10.36680/j.itcon.2022.018.

ADAMU, S.; HOWELL, G.A; ABDUL HAMID, R. Lean construction techniques implementation in Nigeria Construction Industry. Int. J. Sci. Eng. Res, v. 3, n. 12, p. 1–11, 2012.

AKANBI, T.; ZHANG, J. Design information extraction from construction specifications to support cost estimation. Automation in Construction, v. 131, 2021. Disponível em: https://doi.org/10.1016/j.autcon.2021.103835.

AKAO, Yoji. Introdução ao Desdobramento da Qualidade. Belo Horizonte: Fundação Christiano Ottoni, 1996.

AL OJAIL, M. Appearance of Intelligent Digital Mesh: A Landmark in E-Business. International Journal of Advanced Science and Technology, v. 29, n. 8, p. 1602-1613, 2020. Disponível em: https://www.researchgate.net/publication/344868809_Appearance_of_Intelligent_Digital_Mesh_A_Landmark_in_E-Business.

AL-AOMAR, R. Analysis of lean construction practices at Abu Dhabi construction industry. Lean Construction Journal, v. 2012, p. 105–121, 2012.

ALBEAINO, G., GHEISARI, M. Trends, benefits, and barriers of unmanned aerial systems in the construction industry: a survey study in the United States. Journal of Information Technology in Construction, v. 26, p. 84-111, 2021. Disponível em: https://doi.org/10.36680/j.itcon.2021.006.

ALBEAINO, G., GHEISARI, M., FRANZ, B. W. A systematic review of unmanned aerial vehicle application areas and technologies in the AEC domain. Journal of Information Technology in Construction, v. 24, p. 381-405, 2019. Disponível em: https://www.itcon.org/2019/20.

ALI, B.; ZAHOOR, H.; AIBINU, A.; NASIR, A. R.; TARIQ, A., IMRAN, U.; KHAN, R. M. BIM aided information and visualization repository for managing construction delay claims. Journal of Information Technology in Construction, v. 26, p. 1023-1040, 2021. Disponível em: https://doi.org/10.36680/j.itcon.2021.054.

ALWI, S.; AND HAMPSON, K. D. Identifying the important causes of delays in building construction projects. In The 9th East Asia-Pacific Conference on Structural Engineering and Construction, 2003.

ARKSEY, H.; O’MALLEY, LISA. Scoping Studies: Towards a Methodological Framework. International Journal of Social Research Methodology: Theory and Practice, v.8, n.1, p.19-32, 2005. Disponível em: https://doi.org/10.1080/1364557032000119616.

BEGIĆ, H.; GALIĆ, M.; DOLAČEK-ALDUK, Z. Digitalization and automation in construction project’s life-cycle: a review. Journal of Information Technology in Construction, V. 27, p. 441-460, 2022. Disponível em: https://doi.org/10.36680/j.itcon.2022.021.

BELAY, A. M. Lean Construction Practices and its Effects : A Case Study at St Olav ’ s Integrated Hospital , Norway. Lean Construction Journal, 2014, 2012.

BHOKARE, S.; GOYAL, L.; REN, R.; ZHANG, J. Smart construction scheduling monitoring using YOLOv3-based activity detection and classification. Journal of Information Technology in Construction, v. 27, p. 240-252, 2022. Disponível em: https://doi.org/10.36680/j.itcon.2022.012.

BLINN, N.; ISSA, R. R. A. Integration strategies for advanced construction technologies in the US AECO industry. Journal of Information Technology in Construction, v. 27, p. 109-129, 2022. Disponível em: https://doi.org/10.36680/j.itcon.2022.006.

BORRMANN, A.; KÖNIG, M.; KOCH, C.; BEETZ, J. Building information modeling: Why? what? how? Springer, 2018.

BOSCHERT, S.; HEINICH, C.; AND ROSEN, R. Next-generation digital twin. Proceedings of TMCE, Las Palmas de Grad Canaria, Spain, 2017.

BOYES, H. et al. The industrial internet of things (IIoT): An analysis framework. Computers in Industry, V. 101, p. 1–12, 2018. Disponível em: https://doi.org/10.1016/j.compind.2018.04.015.

C. MARKOU, G.K. KOULINAS, A.P. VAVATSIKOS. Project resources scheduling and leveling using Multi-Attribute Decision Models: models’ implementation and case study. Expert Syst. Appl., v. 77, p. 160–169, 2017. Disponível em: https://doi.org/10.1016/j. eswa.2017.01.035.

CHANG, Y-T., HSIEH, S-H. A review of Building Information Modeling research for green building design through building performance analysis. Journal of Information Technology in Construction, V. 25, p. 1-40, 2020. Disponível em: https://doi.org/10.36680/j.itcon.2020.001.

CHAVES FILHO, F. Avaliação do custo de uma obra devido à falta de um planejamento adequado. Brasília: Centro Universitário de Brasília - UniCEUB, Faculdade de Tecnologia e Ciências Sociais Aplicadas, 2014.

CHEN, X. et al. BIM-based optimization of camera placement for indoor construction monitoring considering the construction schedule. Automation in Construction, V. 130, 2021. Disponível em: https://doi.org/10.1016/j.autcon.2021.103825.

COHEN, R. (2006). What’s in a Name? Data Governance Roles, Responsibilities and Results Factors, 2006. Disponível em: https://www.information-management.com/news/whats-in-a-name-data-governance-roles-responsibilities-and-results-factors.

CRAVEIRO, F. et al. (2019). Additive manufacturing as an enabling technology for digital construction: A perspective on Construction 4.0. Automation in Construction, v. 103, pag. 251–267, 2019. Disponível em: https://doi.org/10.1016/j.autcon.2019.03.011.

EASTMAN, C., TEICHOLZ, P., SACKS, R. & LISTON, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers and Contractors. Wiley, 2011.

EISENHARDT, K. M. Building Theories from Case Study Research. Academy of Management Journal, v. 14, n. 4, p. 532–550, 1989.

EKANAYAKE, B. et al. Computer vision-based interior construction progress monitoring: A literature review and future research directions. Automation in Construction, V. 127, 2021. Disponível em: https://doi.org/10.1016/j.autcon.2021.103705

ELZOMOR, M., BURKE, R., PARRISH, K., & GIBSON, G. E. Front-End Planning for Large and Small Infrastructure Projects: Comparison of Project Definition Rating Index Tools. Journal of Management in Engineering, v. 34, 2018. Disponível em: https://doi.org/10.1061/(ASCE)ME.1943-5479.0000611.

ERPAY, M. Y., SERTYESILISIK, B. Preliminary checklist proposal for enhancing BIM-based construction project contracts. Journal of Information Technology in Construction, v. 26, p. 341-365, 2021. Disponível em: https://doi.org/10.36680/j.itcon.2021.019.

F. BARBOSA, J. WOETZEL, J. MISCHKE, M.J. RIBEIRINHO, M. SRIDHAR, M. PARSONS, N. BERTRAM, S. BROWN. Reinventing Construction: A Route of Higher Productivity. McKinsey Global Institute, 2017.

F. SARTIPI. Influence of 5G and IoT in construction and demolition waste recycling - conceptual smart city design. J. Construct. Mat., v. 1, p. 1–9, 2020.

FELLOWS, R., LIU, A. M. Managing organizational interfaces in engineering construction projects: addressing fragmentation and boundary issues across multiple interfaces. Construction management and economics, v. 30, p. 653-671, 2012.

FITZSIMMONS, J. P., LU, R., HONG, Y., BRILAKIS, I. Construction schedule risk analysis – a hybrid machine learning approach. Journal of Information Technology in Construction, V. 27, p. 70-93, 2022. Disponível em: https://doi.org/10.36680/j.itcon.2022.004.

Gershwin, S. B. The future of manufacturing systems engineering. International Journal of Production Research, v. 56, p. 224-237, 2018. Disponível em: https://doi.org/ 10.1080/00207543.2017.1395491.

GETULI, V. et al. BIM-based immersive Virtual Reality for construction workspace planning: A safety-oriented approach. Automation in Construction, V. 114, 2020. Disponível em: https://doi.org/10.1016/j.autcon.2020.103160

GIBBERT, M.; RUIGROK, W. The ‘“What”’ and ‘“How”’ of Case Study Rigor: Three Strategies Based on Published Work. Organizational Research Methods, v. 13, n. 4, p. 710–737, 2010.

GLENIGAN. UK Industry Performance Report, vol 32, 2015. Disponível em: https://doi.org/10.3987/Contents-13-8802.

GOESSENS, S., MUELLER, C., LATTEUR, P. Feasibility study for drone-based masonry construction of real-scale structures. Automation in Construction, V. 94, 2018. Disponível em: https://doi.org/10.1016/j.autcon.2018.06.015.

GOLI, A. et al. Big Data-Driven Cognitive Computing System for Optimization of Social Media Analytics. Institute of Electrical and Electronics Engineers Inc., V. 8, p. 82215-82226, 2020. Disponível em: https://doi.org/10.1109/ACCESS.2020.2991394

GRIEVES, M. Product Lifecycle Management: the new paradigm for enterprises. International Journal of Product Development, v. 2, p. 71-84, 2005.

GUTIERREZ, G. J., et al. A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables. Neurocomputing, v. 167, p. 24-31, 2015. Disponível em: https://doi.org/10.1016/j.neucom.2014.09.091.

HALLERMANN, N., AND MORGENTHAL, G. Visual inspection strategies for large bridges using Unmanned Aerial Vehicles (UAV). In The Seventh International Conference on Bridge Maintenance, Safety and Management (IABMAS 2014), p. 661–667, 2014. Disponível em: https://doi.org/10.1201/b17063-96.

HALTTULA, H., HAAPASALO, H., SILVOLA, R. Managing data flows in infrastructure projects - the lifecycle process model. Journal of Information Technology in Construction, V. 25, p. 193-211, 2020. Disponível em: https://doi.org/10.36680/j.itcon.2020.012.

HARICHANDRAN, A., RAPHAEL, B., MUKHERJEE, A. A hierarchical machine learning framework for the identification of automated construction. Journal of Information Technology in Construction, V. 26, p. 591-623, 2021. Disponível em: https://doi.org/10.36680/j.itcon.2021.031.

HASSANALIAN, M., AND ABDELKEFI, A. Classifications, applications, and design challenges of drones: A review. Progress in Aerospace Sciences, v. 91, p. 99–131, 2017.

HELLMUTH, R. Update approaches and methods for digital building models – literature review. Journal of Information Technology in Construction, V. 27, p. 191-222, 2022. Disponível em: https://doi.org/10.36680/j.itcon.2022.010.

HILFERT, T. AND KÖNIG, M. Low-cost virtual reality environment for engineering and construction. Visualization in Engineering, v. 4, p. 1-18, 2016.

HOSSAIN, M. U.; WU, Z.; POON, C. S. Comparative environmental evaluation of construction waste management through different waste sorting systems in Hong Kong. Waste Management, 2017. v. 69, p. 325–335.

IQBAL, A. et. al. Big data Analytics based energy analysis and monitoring for multi-storey hospital buildings: case study. Advances in Intelligent Systems and Computing, v. 1096, 2020. Disponível em: https://doi-org.ez101.periodicos.capes.gov.br/10.1007/978-981-15-1532-3_14

J. TEIZER. Status quo and open challenges in vision-based sensing and tracking of temporary resources on infrastructure construction sites. Adv. Eng. Inform., v. 29 p. 225–238, 2015. Disponível em: https://doi.org/10.1016/j.aei.2015.03.006.

J.D. HEON, K. EL-RAYES. Multiobjective optimization of resource leveling and allocation during construction scheduling. J. Constr. Eng. Manag, v. 137, pag. 1080–1088, 2011. Disponível em: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000368.

J.K.W. WONG, J. GE, S.X. HE. Digitisation in facilities management: a literature review and future research directions. Autom. Constr., v. 92, p. 312–326, 2018. Disponível em: https://doi.org/10.1016/j.autcon.2018.04.006.

JAGTAP, S., RAHIMIFARD, S. The digitization of food manufacturing to reduce waste – Case study of a ready meal factory. Waste management, v. 87, p. 387-397, 2019. Disponível em: https://doi.org/ 10.1016/j.wasman.2019.02.017.

JAHANGER, Q. K., LOUIS, J., PESTANA, C., TREJO, D. Potential positive impacts of digitalization of construction-phase information management for project owners. Journal of Information Technology in Construction, V. 26, p. 1-22, 2021. Disponível em: https://doi.org/10.36680/j.itcon.2021.001.

JHA, A. et. al. Renewable energy: Present research and future scope of Artificial Intelligence. Renewable and Sustainable Energy Reviews, v. 77, 2017. Disponível em: https://doi.org/10.1016/j.rser.2017.04.018.

JORDAN, M. I.; MITCHELL, T. M. Machine learning: Trends, perspectives, and prospects. Science, v. 349, n. 6224, p. 255-260, 2015. 349(6245). Disponível em: https://www.science.org/doi/10.1126/science.aaa8415.

K. JONES, K. GREGORY, A. MISLICK, A. DANIEL. Cost estimation – methods and tools. Chromatagraphia, v. 79, p. 113–114, 2016. Disponível em: https://doi.org/10.1007/s10337- 015-2973-0.

KAMBLE, S. S. Modeling the internet of things adoption barriers in food retail supply chains. Journal of Retailing and Consumer Services, V. 48, p. 154-168, 2019. Disponível em: https://doi.org/10.1016/j.jretconser.2019.02.020.

KAMP, B., OCHOA, A., DIAZ, J. Smart servitization within the context of industrial user–supplier relationships: contingencies according to a machine tool manufacturer. International Journal on Interactive Design and Manufacturing, V. 11, 2017. Disponível em: https://doi.org/10.1007/s12008-016-0345-0.

KANG CHOW, J. et. al. Automated defect inspection of concrete structures. Automation in Construction, V. 132, 2021. Disponível em: https://doi.org/10.1016/j.autcon.2021.103959.

KARMAKAR, A., DELHI, V. S. K. Construction 4.0: what we know and where we are headed? Journal of Information Technology in Construction, V. 26, p. 526-545, 2021. Disponível em: https://doi.org/10.36680/j.itcon.2021.028.

KHALLAF, R., KHALLAF, M. Classification and analysis of deep learning applications in construction: A systematic literature review. Automation in Construction, V. 129, 2021. Disponível em: https://doi.org/10.1016/j.autcon.2021.103760.

KOVACIC, I., HONIC, M. Scanning and data capturing for BIM-supported resources assessment: a case study. Journal of Information Technology in Construction, V. 26, p. 624-638, 2021. Disponível em: https://doi.org/10.36680/j.itcon.2021.032.

LAMEIRAS, Maria A. P., HECKSHER, Marcos. Indicadores mensais do mercado de trabalho – agosto de 2022. Instituto de pesquisas econômicas aplicadas (IPEA). Nota de conjuntura 2 – 4° trimestre de 2022, n° 57. Disponível em: https://www.ipea.gov.br/cartadeconjuntura/index.php/category/mercado-de-trabalho/

LEE, S. Development of augmented reality applications for refrigerated warehouse. ICIC Express Letters, Part B: Applications, v. 9, p. 469-476, 2018.

LEONI, V. Impacto no custo de uma obra por falta de planejamento – Efeito Dominó, 09 fevereiro 2017. Disponível em: https://www.linkedin.com/pulse/impacto-custo-de-uma-obra-por-falta-planejamento-pelles-leoni/?originalSubdomain=p.

M. GOLPARVAR-FARD, J. BOHN, J. TEIZER, S. SAVARESE, F. PE˜NA-MORA. Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques. Autom. Constr., v. 20, p. 1143–1155, 2011. Disponível em: https://doi.org/10.1016/j.autcon.2011.04.016.

M. POLONSKI. Application of the work breakdown structure in determining cost buffers in construction schedules. Arch. Civ. Eng., p. 147–161, 2015. Disponível em: https://doi.org/10.1515/ace-2015-0010.

M.D. ROSENAU, G.D. GITHENS, Successful Project Management: A Step by Step Approach with Practical Examples. Wiley, 2011. Disponível em: https://books.google.ca/books?hl=en&lr=&id=YSFHAAAAQBAJ&oi=fnd&pg=PT13&ots=i7z9IGM6I7&sig=vr9E673nnAMO7-cbJmC 5-zV4YFw&redir_esc=y#v=onepage&q&f=false.

MACHADO, R. Análise do retrabalho devido à falta de planejamento em uma obra da indústria da construção civil. Rio de Janeiro: NPPG/POLI – UFRJ, Revista Boletim do Gerenciamento, 2019.

MADUBUIKE, O. C., ANUMBA, C. J., KHALLAF, R. A review of digital twin applications in construction. Journal of Information Technology in Construction, V. 27, p. 145-172, 2022. Disponível em: https://doi.org/10.36680/j.itcon.2022.008.

MAHESHWARI, SUMIT; GAUTAM, PRERNA; JAGGI, CHANDRA K. Role of Big Data Analytics in supply chain management: current trends and future perspectives. International Journal of Production Research, [s. l.], v. 0, n. 0, p. 1–26, 2020. Disponível em: https://doi.org/10.1080/00207543.2020.1793011.

MANAVALAN, E., JAYAKRISHNA, K. A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements. Computers and Industrial Engineering, v. 127, p. 925-953, 2019. Disponível em: https://doi.org/10.1016/j.cie.2018.11.030.

MANITA, R. et al. The digital transformation of external audit and its impact on corporate governance. Technological Forecasting and Social Change, V. 150, 2020. Disponível em: https://doi.org/10.1016/j.techfore.2019.119751.

MAROCCO, M., GAROFOLO, I. Integrating disruptive technologies with facilities management: A literature review and future research directions. Automation in Construction, V. 131, 2021. Disponível em: https://doi.org/10.1016/j.autcon.2021.103917

MELENBRINK, N., WERFEL, J. AND MENGES, A. (2020) On-site autonomous construction robots: Towards unsupervised building. Automation in Construction, v. 119, p. 103-312, 2020. Disponível em: https://doi.org/10.1016/j.autcon.2020.103312.

METALLO, C. Understanding business model in the Internet of Things industry. Technological Forecasting and Social Change, v. 136, p. 298-306, 2018. Disponível em: https://doi.org/10.1016/j.techfore.2018.01.020.

METERELLIYÖZ, M. Ü., ÖNDER, O. BIM-enabled learning for building systems and technology. Journal of Information Technology in Construction, V. 27, p. 1-19, 2022. Disponível em: https://doi.org/10.36680/j.itcon.2022.001.

MISHRA, A. AND BHANDARI, S. (2018). Performance assessment of ongoing construction projects under town development fund. Nepal, v. 1, p. 27–39, 2018.

MOHAMMADI, A. et al. Applying lean construction principles in road maintenance planning and scheduling. International Journal of Construction Management, 2020. v. 0, n. 0, p. 1–11.

MORENO, J. Trading strategies modeling in Colombian power market using artificial intelligence techniques. Energy Policy, V. 37, p. 836-843, 2009. Disponível em: https://doi.org/10.1016/j.enpol.2008.10.033.

MUNOZ-LA RIVERA F. et al. Methodological-technological framework for construction 4.0. Archives of Computational Methods in Engineering, v. 28, p. 689-711, 2021. Disponível em: https://doi.org/ 10.1007/s11831-020-09455-9.

NASIR, H. et al. The Implementation of IoT Based Smart Refrigerator System. Conference on Smart Sensors and Application, 2018. Disponível em: https://doi.org/10.1109/ICSSA.2018.8535867.

NIK-BAKHT, M., LEE, J., DEHKORDI, S. H. BIM-based reverberation time analysis. Journal of Information Technology in Construction, V. 26, p. 28-38, 2021. Disponível em: https://doi.org/10.36680/j.itcon.2021.003.

NIKNAM, M., JALAEI, F., KARSHENAS, S. Integrating BIM and product manufacturer data using the semantic web technologies. Journal of Information Technology in Construction, V. 24, p. 424-439, 2019. Disponível em: https://www.itcon.org/2019/22.

NILASHI, M. et al. Measuring sustainability through ecological sustainability and human sustainability: A machine learning approach. Journal of cleaner production, v. 240, 2019. Disponível em: https://doi.org/ 10.1016/j.jclepro.2019.118162.

NOORALISHAHI, P., IBARRA-CASTANEDO, C., DEANE, S., LÓPEZ, F., PANT, S., GENEST, M., AVDELIDIS, N.P., MALDAGUE, X.P.V. Drone-Based Non-Destructive Inspection of Industrial Sites: A Review and Case Studies. Drones, 2021. Disponível em: https://doi.org/10.3390/drones5040106.

OYEDOLAPO, O. Implementation of the Lean Approach in Sustainable Construction : A Conceptual Framework, Lancashire, Central. PhD. Thesis, n. April, p. pp441, 2014.

PANERU, S., JEELANI, I. Computer vision applications in construction: Current state, opportunities & challenges. Automation in Construction, V. 132, 2021. Disponível em: https://doi.org/10.1016/j.autcon.2021.103940.

PEKURI, A., HAAPASALO, H. & HERRALA, M. Productivity and performance management – managerial practices in construction industry. International Journal of Performance Measurement, v. 1, p. 39-58, 2011.

PERRIER, N., BLED, A., BOURGAULT, M., COUSIN, N., DANJOU, C., PELLERIN, R., ROLAND, T. (2020). Construction 4.0: a survey of research trends. Journal of Information Technology in Construction, V. 25, p. 416-437, 2020. Disponível em: https://doi.org/10.36680/j.itcon.2020.024.

PIDGEON, A., DAWOOD, N. BIM Adoption Issues in Infrastructure Construction Projects: Analysis and Solutions. Journal of Information Technology in Construction, V. 26, p. 263-285, 2021. Disponível em: https://doi.org/10.36680/j.itcon.2021.015.

PRIORE, Paolo et al. Applying machine learning to the dynamic selection of replenishment policies in fast-changing supply chain environments. International Journal of Production Research, v. 57, n. 11, p. 3663-3677, 2019. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/00207543.2018.1552369.

Q. LU, X. XIE, J. HEATON, A.K. PARLIKAD, J. SCHOOLING. From BIM towards digital twin: Strategy and future development for smart asset management. Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future, v. 853, p. 392–404, 2020. Disponível em: https://doi.org/10.1007/978-3-030-27477-1_30.

RAKHA, T., GORODETSKY, A. Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones. Automation in Construction, V. 93, 2018. Disponível em: https://doi.org/10.1016/j.autcon.2018.05.002.

RAO, A. S. et al. Real-time monitoring of construction sites: Sensors, methods, and applications. Automation in Construction, V. 136, 2022. Disponível em: https://doi.org/10.1016/j.autcon.2021.104099.

REJA, V. K.; VARGHESE, K., HÁ, Q. P. Computer vision-based construction progress monitoring. Automation in Construction, V. 138, 2022. Disponível em: https://doi.org/10.1016/j.autcon.2022.104245.

ROESCH, Sylvia Maria Azevedo. Projetos de Estágio e de Pesquisa em Administração. 3. ed. São Paulo, Atlas, 2007.

ROZENFELD, H.; FORCELLINI, F.A.; AMARAL, D.C.; TOLEDO, J.C.; SILVA, S.L.; ALLIPRANDINI, D.H.; SCALICE, R.K. Gestão de Desenvolvimento de Produtos: uma referência para a melhoria do processo. São Paulo: Saraiva, 2006.

SAFURA ZABIDIN, N., BELAYUTHAM, S., CHE IBRAHIM, C. K. I. A bibliometric and scientometric mapping of Industry 4.0 in construction. Journal of Information Technology in Construction, V. 25, p. 287-307, 2020. Disponível em: https://doi.org/10.36680/j.itcon.2020.017.

SALLING, K. B., & LELEUR, S. Accounting for the inaccuracies in demand forecasts and construction cost estimations in transport project evaluation. Transport Policy, v. 38, p. 8–18, 2015. Disponível em: https://doi.org/10.1016/j.tranpol.2014.11.006

SANTIAGO, C. A. F. et al.. Casos reais de implantação de TQC: PDCA, Método de solução de problemas e QFD e garantia da qualidade. v. 2. São Paulo: Fundação Christiano Ottoni, 1994.

SANTOS, D. SANTOS, P. Investigação de perdas devido ao trabalho inacabado e o seu impacto no tempo de ciclo dos processos construtivos. São Cristovão: Universidade Federal de Sergipe, 2017.

SARHAN, J. G. et al. Lean Construction Implementation in the Saudi Arabian Construction Lean Construction Implementation in the Saudi Arabian Construction Industry. Construction Economics and Bulding, 2017.

SHAH K., MITCHELL A., LEE D. AND MALLELA J. Addressing Challenges and Return on Investment (ROI) for Paperless Project Delivery (e-Construction). FHWA/ Construction/ Technologies and Innovation/ e-Construction. FHWA, 2017.

SIEFFERT, Y., HUYGEN, J.M., DAUDON, D. Sustainable construction with repurposed materials in the context of a civil engineering-architecture collaboration. Journal of a cleaner production, v. 67, p. 125-138, 2014. Disponível em: https://doi.org/10.1016/j.jclepro.2013.12.018.

SIMCHI-LEVI, D., WU, M. X. Powering retailers’ digitization through analytics and automation. International Journal of Production Research, v. 56, 2018. Disponível em: https://doi.org/10.1080/00207543.2017.1404161.

SOUSA, L. Problemas em cronogramas nos projetos da construção civil, 25 julho 2020. Disponível em: https://administradores.com.br/artigos/problemas-em-cronogramas-nos-projetos-da-constru%C3%A7%C3%A3o-civil

SYAM, N.; SHARMA, A. Waiting for a sales renaissance in the fourth industrial revolution: Machine learning and artificial intelligence in sales research and practice. Industrial Marketing Management, [s. l.], v. 69, p. 135–146, 2018. Disponível em: https://doi.org/10.1016/j.indmarman.2017.12.019.

TALLGREN, M. V., ROUPÉ, M., JOHANSSON, M., BOSCH-SIJTSEMA, P. (2020). BIM-tool development enhancing collaborative scheduling for pre-construction. Journal of Information Technology in Construction, v. 25, p. 374-397, 2020. Disponível em: https://doi.org/10.36680/j.itcon.2020.022.

Teicholz, P. Labor-productivity declines in the construction industry: Causes and remedies (another look). AECbytes Magazine, 2013. Disponível em: https://www.aecbytes.com/viewpoint/2013/issue_67.html.

THING LEO, G., MEBARKI, A., CLAUDE, F., GOBIN, C., EL MEOUCHE, R. On the quality of buildings and construction projects: metrics and process dynamics. Journal of Information Technology in Construction, V. 26, p. 174-192, 2021. Disponível em: https://doi.org/10.36680/j.itcon.2021.011.

UMAR, T. (2021). Applications of drones for safety inspection in the Gulf Cooperation Council construction. Engineering, Construction and Architectural Management, v. 28, No. 9, p. 2337-2360, 2021. Disponível em: https://doi.org/10.1108/ECAM-05-2020-0369

VAN BERLO, L. and KRIJNEN, T. Using the BIM Collaboration Format in a Server Based Workflow. Procedia Environmental Sciences, v. 22, p. 325–332, 2014.

VICK, S., & BRILAKIS, I. (2018). Road Design Layer Detection in Point Cloud Data for Construction Progress Monitoring. Journal of Computing in Civil Engineering, v. 32. Disponível em: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000772

WANG, J. et al. Critical factors affecting willingness of design units towards construction waste minimization: An empirical study in Shenzhen, China. Journal of Cleaner Production, v. 221, p. 526–535, 2019.

WEN, Z. et al. Design, implementation, and evaluation of an Internet of Things (IoT) network system for restaurant food waste management. Waste management, v. 73, p. 26-38, 2018. Disponível em: https://doi.org/10.1016/j.wasman.2017.11.054.

WOETZEL, J. et al. The construction industry has a productivity problem — and here’s how to solve it. MarketWatch, 2017. Disponível em: https://www.marketwatch.com/story/the-construction-industry-has-a-productivity-problem-and-heres-how-to-solve-it-2017-03-04.

WU, L. et al. Intelligent data-driven approach for enhancing preliminary resource planning in industrial construction. Automation in Construction, V. 130, 2021. Disponível em: https://doi.org/10.1016/j.autcon.2021.103846.

YIN, R. K. Validity and generalization in future case study evaluations. Evaluation, v. 19, n. 3, p. 321–332, 2013.

ZHANG, Y. et al. Mobile social media in inter-organizational projects: Aligning tool, task and team for virtual collaboration effectiveness. International Journal of Project Management, v. 36, n. 8, p. 1096–1108, 2018.

ZHANG, Z. et al. A framework of ERP systems implementation success in China: An empirical study. International Journal of Production Economics, v. 98, n. 1, p. 56–80, 2005.

ZHOU, S., AND GHEISARI, M. Unmanned aerial system applications in construction: a systematic review. Construction Innovation, 2018. Disponível em: https://doi.org/10.1108/CI-02-2018-0010

Publicado

05-02-2024

Como Citar

Hartz, D. B., Borchardt, M., & Jung, C. F. (2024). Proposta de modelo de planejamento, projeto e execução para aprimorar a construção civil com apoio das tecnologias digitais. Revista Produção Online, 23(3), 5126 . https://doi.org/10.14488/1676-1901.v23i3.5126

Edição

Seção

Artigos