Application of the Flexsim® discrete event simulator for virtualization of the VGR module (robot) of the physical simulator Fischertechnik® in a Digital Twin context

Authors

DOI:

https://doi.org/10.14488/1676-1901.v24i2.5234

Keywords:

3-axis robot, Vacuum gripper, Digital Twin, Flexsim®, Industry 4.0

Abstract

This paper describes the process of virtualizing a 3-axis robot with a vacuum gripper (VGR - Vacuum Gripper Robot) for proof-of-concept pilot applications of the Digital Twin. The aim was to represent the dynamics of a board test environment including the characteristics of the physical twin, with the objective of investigating the use of the Flexsim® discrete event simulator for virtualization. The experimental research was carried out in a laboratory, in partnership with the State University of Amazonas (UEA) and its Technology and Innovation Center (HUB), in the Industry 4.0 Laboratory (I-4.0). The study used the Flexsim® simulator, a Delta AS228P PLC and the Fischertechnik® physical factory environment. The developed Digital Twin allowed the movement of parts between the modules of the physical simulator in a similar way to the real environment. The results prove the concept of Digital Twin and demonstrate the challenges of working with simulation models that reflect the characteristics of a real environment, as well as allow improvements to the developed system and generate opportunities for future work.

Downloads

Download data is not yet available.

Author Biographies

Adna Thais de Lima Nascimento, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brasil.

Pós-graduanda em MBA de Gestão de Projetos pela Universidade do Estado do Amazonas - UEA. Graduada em Engenharia de Produção pela Universidade Federal do Amazonas – UFAM e Bacharela em Administração pela Universidade Federal do Amazonas - UFAM. Desenvolveu estágio em administração na área de controle da qualidade, com ênfase em análise de dados da qualidade, follow-up dos quadros de gestão à vista e atuação em projetos de melhoria da área produtiva. Tem como áreas de atuação a Pesquisa Operacional, Simulação de Processos e Sistemas de Produção Inteligentes, desenvolvendo atividades de melhoria em empresas do Polo Industrial de Manaus.

Gabriela de Mattos Veroneze, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brasil.

Doutora em Engenharia de Produção pela North Carolina Agricultural and Technical State University e Bacharel em Engenharia Química pela PUCPR. Tem como áreas de pesquisa Projeto e Produção de Produto  com  foco  em  economia  circular  e produção  de  equipamentos  médicos,  Pesquisa  Operacional  na  área  de  gestão  de ajuda   humanitária.   Membro   do   Grupo   Gestor   do   Programa   de   Mestrado em Engenharia de Produção e Professor do Departamento de Engenharia de Produção da Universidade Federal do Amazonas.

Leandra Karolina Batista Leal, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brasil.

Graduanda em Engenharia de Produção na Universidade do Estado do Amazonas. Desenvolvedora Jr. de Processos na área de Modelagem e Simulação em projetos de P&D (2021 - 2023) no HUB Tecnologia. Representante da ABEPRO Jovem no estado do amazonas (2022 - 2023). Realizou monitoria na disciplina de Probabilidade e Estatística (2021). Desenvolveu projetos de competição voltados para a área de transporte nas equipes Arapaima Gigas (2020 - 2021) para a Worldwide Ferry Safety Association Design Competition, e Urutau Aerodesign (2018 - 2019) para a Competição SAE Brasil Aerodesign. Participou da diretoria do CAEP - Centro Acadêmico de Engenharia de Produção (2020) e do DAETEC - Diretório Acadêmico de Engenharia e Tecnologia (2021), ambos com foco na representatividade estudantil e promoção de eventos acadêmicos.

Vitoria de Melo Freires, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brasil.

Pós-graduanda em Engenharia e Gestão Industrial pela Universidade Federal do Amazonas. Bacharel em Engenharia de Produção pela Universidade Federal do Amazonas, tem como áreas de atuação a Pesquisa Operacional, Simulação de Processos e Sistemas de Produção Inteligentes, desenvolvendo atividades de melhoria em empresas do Polo Industrial de Manaus.

References

ABREU, C. E. Indústria 4.0: Como as empresas estão utilizando a simulação para se preparar para o futuro. Revista de Ciências Exatas e Tecnologia, p. 49–53, 2017.

BOSCHERT, S.; ROSEN, R. Digital twin—the simulation aspect. Mechatronic Futures. Cham: Springer International Publishing, 2016. p. 59–74.

CHWIF, L.; M, Afonso C. Modelagem e Simulação de Eventos Discretos. São Paulo: ed. 2015.

ROCHA, L. J. S. O Conceito de Digital Twin como Ferramenta de Apoio à Operação de Veículos Ferroviários. 2022. Dissertação (Mestrado em Tecnologias Interativas e Jogos Digitais) - Universidade do Porto, 2022.

DA SILVA, F. J. P. Framework para Digital Twins de Processos. 2021. Dissertação (Mestrado em Engenharia Eletrotécnica e de Computadores – Faculdade do Porto, 2021.

FLEXSIM. FlexSim Manual. 2022. Disponível em: https://docs.flexsim.com/en/21.2/Introduction/Welcome/. Acesso em: 25 de dezembro de 2023.

FONTELLES, M. J. et al. Metodologia da pesquisa científica: diretrizes para a elaboração de um protocolo de pesquisa. Revista Paraense de Medicina, v. 23, n. 3, p. 1-8, 2009.

GARETTI, M.; ROSA, P.; TERZI, S. Life Cycle Simulation for the design of Product–Service Systems. Computers in industry, v. 63, n. 4, p. 361–369, 2012.

GHAREGOZLOU, Matthew. “A nova Indústria 4.0 e os velhos desafios da integração de sistemas”. 2016. Disponível em: https://docmanagement.com.br/09/02/2016/nova-industria-4-0-e-os-velhos-desafios-da-integracao-de-sistemas/ . Acesso em: 29 nov. 2023.

GIL, A. C. Como elaborar projetos de pesquisa. 4 ed. São Paulo: Atlas, 2007.

GRIEVES, M.; VICKERS, J. Digital Twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. Transdisciplinary perspectives on complex systems: New findings and approaches. 2017. p. 85-113.

HAAG S, Anderl R. Digital Twin – Proof of concept. Manuf Lett (2018).

IMRAN, F.; KANTOLA, J. Review of industry 4.0 in the light of sociotechnical system theory and competence-based view: A future research agenda for the evolute approach. Advances in Intelligent Systems and Computing. Cham: Springer International Publishing, 2019. p. 118-128.

KELLER, A. L. Internet das coisas aplicada à indústria: dispositivo para interoperabilidade de redes industriais. Dissertação (Mestrado em Engenharia Elétrica) - Universidade do Vale do Rio dos Sinos, 2017.

KRITZINGER, W. et al. Digital Twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, v. 51, n. 11, p. 1016–1022, 2018.

LIM, K. Y. H.; ZHENG, P.; CHEN, C.-H. A state-of-the-art survey of Digital Twin: techniques, engineering product lifecycle management and business innovation perspectives. Journal of intelligent manufacturing, v. 31, n. 6, p. 1313–1337, 2020.

LOHTANDER, M. Micro manufacturing unit-creating Digital Twin objects with common engineering software. Procedia Manufacturing, v. v. 17, p. 468–475, 2018.

LOPEZ-AREVALO, I. et al. A WoT-based method for creating digital sentinel twins of IoT devices. Sensors (Basel, Switzerland), v. 21, n. 16, p. 5531, 2021.

LUŚCIŃSKI, S. Digital Twinning for Smart Industry. Proceedings of the 3rd EAI International Conference on Management of Manufacturing Systems. Anais [...], EAI, 2018.

MARKO, Mariane et al. Competências individuais requeridas para trabalhadores das indústrias 4.0 da região sudoeste do Paraná. 2021. Dissertação (Mestrado em Engenharia de Produção e Sistemas) - Universidade Tecnológica Federal do Paraná, 2021.

MARTIN, S. O Que é um Digital Twin. Disponível em: https://blog.nvidia.com.br/2022/01/06/o-que-e-um-digital-twin. Acesso em: 17 jan. 2024.

SHAFTO, M. Modeling, simulation, information technology & processing roadmap. National Aeronautics and Space Administration, v. 32, p. 1–38, 2012.

QIAN, Cheng et al. Digital Twin—Cyber replica of physical things: Architecture, applications and future research directions. Future Internet, v. 14, n. 2, p. 64, 2022.

ROSEN, R. et al. About The Importance of Autonomy and Digital Twins for the Future of Manufacturing. IFAC-PapersOnLine. v. 48, n. 3, p. 567-572, 2015.

SAEZ, Miguel et al. Real-time manufacturing machine and system performance monitoring using internet of things. IEEE Transactions on Automation Science and Engineering, v. 15, n. 4, p. 1735-1748, 2018.

SANTOS, C. H. A.; SOUZA, D. L. Integração dos Protocolos MMS (IEC 61850) Modbus TCP para aplicação em acionamento de equipamentos de média tensão. Trabalho de Conclusão de Curso (Graduação em Engenharia Elétrica) - Faculdade Doctum de João Monlevade. 2019. 92 p.

SARACCO, Roberto. Digital Twins: Bridging physical space and cyberspace. Computer, v. 52, n. 12, p. 58-64, 2019.

SHAON, Guodong et al. Use Case Scenarios for Digital Twin Implementation Based on ISO 23247. National Institute of Standards: Gaithersburg, MD, USA, 2021.

SWAIN, J. J. Simulation Software Survey. ORMS-TOday, 42(5). 2015. Disponível em https://www.informs.org/ORMS-Today/Public-Articles/October-Volume-42-Number-5/Simulation-Software-Survey. Acesso em: 25 novembro 2023.

URIARTE, A. G.; NG, Amos HC; MORIS, Matías Urenda. Supporting the lean journey with simulation and optimization in the context of Industry 4.0. Procedia Manufacturing, v. 25, p. 586-593, 2018.

WATANABE, Alexandre. Modelagem de uma planta virtual de produção de PCBs via Digital Twin dentro do contexto da indústria 4.0. 2020. Dissertação de Mestrado.

ŽIDEK, Kamil et al. Digital Twin of experimental smart manufacturing assembly system for industry 4.0 concept. Sustainability, v. 12, n. 9, p. 3658, 2020.

Published

2024-06-17

How to Cite

Nascimento, A. T. de L., Veroneze, G. de M., Leal, L. K. B., & Freires, V. de M. (2024). Application of the Flexsim® discrete event simulator for virtualization of the VGR module (robot) of the physical simulator Fischertechnik® in a Digital Twin context. Revista Produção Online, 24(2), 5234 . https://doi.org/10.14488/1676-1901.v24i2.5234