Optimization of milling parameters using Taguchi and ANOVA methods

Authors

  • Efigenio Rodrigues da Costa Júnior Universidade Federal de Itajubá (UNIFEI), Itajubá, MG, Brasil.

DOI:

https://doi.org/10.14488/1676-1901.v22i4.4858

Keywords:

Milling, Roughness, DOE, Taguchi method

Abstract

The milling process consists of removing excess metal from the surface of a part. Improving the performance of the milling process intrinsically depends on the reduction of variability in the critical quality characteristics defined for the products. The method is based on the design of experiments, using orthogonal matrices and statistical data analysis. According to the characteristics and purpose of the experiment, the equation used to determine the S/N was the lowest best. The objective of the experiment was to find a combination of milling parameters to achieve low roughness on the workpiece. Analyzed the interference of cutting parameters ap, fz, ae and vc in obtaining roughness and cutting force. For the results of roughness and resultant strength, no interaction was significant. As roughness is one of the customer's requirements, the best combination for roughness was analyzed. The best combination had a tooth feed (fz) at 0.05 (mm/tooth) and the depth of cut (ap) at 1.125 (mm).

Downloads

Download data is not yet available.

References

Almeida, H. S.; TOLEDO, J. C. Método Taguchi: Qualidade voltada para o Projeto do Produto e do Processo. Revista de Administração, São Paulo, v. 24, n. 4, p. 62-68, 1989.

ANTONY, J.; PERRY, D.; WANG, C.; KUMAR, M. An application of Taguchi method of experimental design for new product design and development process. Assembly Automation, v. 26, n. 1, pp 18–24, 2006. DOI: DOI: https://doi.org/10.1108/01445150610645611

BRITO, T. G.; PAIVA, A. P.; FERREIRA; J. R.; GOMES, J. H. F.; BALESTRASSI, P. P. A normal boundary intersection approach to multiresponse robust optimization of the surface roughness in end milling process withcombined arrays. Precision Engineering, v. 38, p. 628-638, 2014. DOI: https://doi.org/10.1016/j.precisioneng.2014.02.013

GHALME, S.; MANKAR, A.; BHALERAO, Y. J. Parameter optimization in milling of glass fber reinforced plastic (GFRP) using DOE Taguchi method. SpringerPlus, 2016. DOI: https://doi.org/10.1186/s40064-016-3055-y

GHANI, J. A.; CHOUDHURY, I. A.; HASSAN. H. H. Application of Taguchi method in the optimizations of end milling parameters. Journal of Materials Processing Technology. Malaysia, 2004. DOI: https://doi.org/10.1016/s0924-0136(03)00865-3

KHANNA, N.; GANDHI, A.; NAKUM, B.; SRIVASTAVA, A. Optimization and analysis or surface roughness for INVAR-36 in end milling operations. Materials Today: Proceedings 5. P. 5281-5288p, 2018. DOI: https://doi.org/10.1016/j.matpr.2017.12.111

MAIYAR, L. M.; RAMANUJAM, R.; VENKATESAN, K.; JERALD, J. Optimization of machining parameters for end milling of inconel 718 super alloy using Taguchi based grey relational analysis. Procedia Engineering 64, p. 1276-1282. 2013. DOI: https://doi.org/10.1016/j.proeng.2013.09.208

MIA, M. Mathematical modeling and optimization of MQL assisted end milling characteristics based on RSM and Taguchi method. Measurement 121,p. 249-260, 2018. DOI: https://doi.org/10.1016/j.measurement.2018.02.017

MONTGOMERY, D. C. Design and Analysis of Experiments. 7 ed. New York:

John Wiley, 2009.

RAVINDRANATH, V. M.; SHANKAR, G. S. S.; BASAVARAJAPPA, S.; SURESH, R. Optimization of Al/B4C and Al/B4C/Gr MMC drilling using Taguchi approach. Materials Today: Proceedings 4, p. 11181-11187, 2017. DOI: https://doi.org/10.1016/j.matpr.2017.08.085

ROSS, P. J. Aplicações das técnicas Taguchi na engenharia da qualidade. São Pualo: Makron, 1991.

SANDVIK, C. Manual Técnico de Usinagem. Sandviken, 2011.

WANG, X.; DUAN, J.; JIANG, M.; ZHANG, F.; KE, S.; WU, B. Investigation of processing parameters for three-dimensional lasber ablation based on Taguchi method. Int J Adv Manuf Technol, p. 2963-2974, 2017. DOI: https://doi.org/10.1007/s00170-017-0749-4

Published

2023-05-12

How to Cite

Costa Júnior, E. R. da. (2023). Optimization of milling parameters using Taguchi and ANOVA methods. Revista Produção Online, 22(4), 3678–3690. https://doi.org/10.14488/1676-1901.v22i4.4858

Issue

Section

Papers