Optimized line balancing application considering demand forecast and artificial neural networks

Authors

  • Nathalia Tessari Moraes Universidade de Caxias do Sul (USC), Caxias do Sul, Rio Grande do Sul, Brasil
  • Leandro Luís Corso Universidade de Caxias do Sul (USC), Caxias do Sul, Rio Grande do Sul, Brasil

DOI:

https://doi.org/10.14488/1676-1901.v22i2.4734

Keywords:

Line balancing, Demand forecast, Artificial intelligence

Abstract

Having a line balancing model linked to fluctuations in demand can directly contribute to the important reduction of costs linked to manufacturing. With organizations undergoing more and more transformations and facing high competitiveness, it is essential to adopt quantitative methods and optimized processes that guarantee greater efficiency in resource management. Predicting market behavior is not a simple task, especially when there is high variability in demand. Thus, it is important to consider robust mathematical models with optimized configurations so that they are able to recognize patterns, in order to predict the sales volume with the least possible error. In view of this, the historical sales data of the five main products of a multinational company, those that represent the highest profit, were used, and the demands were calculated using the moving average, exponential smoothing, Box-Jenkins and RNA models. Afterwards, in order to choose the most accurate method, that is, the one with the lowest error, the errors of each of the methods used (RMSE, MAE and MAPE) were calculated in isolation, thus enabling the comparison between them. In view of the result obtained, the balancing of the assembly lines in which the products are produced was modeled, the number of employees for the expected demand was calculated, using a mathematical model of non-linear programming, having as main objective improve current efficiency by organizing lines. Thus, it was found that the ANNs represented greater accuracy for forecasting demand and that, in comparison with the current method used by the company, it proved to be a more reliable method of predicting quantities for resource planning. Afterwards, it was visualized that the balancing method developed brought important adjustments of resources, thus leading to an increase in the efficiency of the production lines by a percentage of 29%, which is considered quite satisfactory.

Downloads

Download data is not yet available.

References

ARAUJO, M. A. Administração de produção e operações: uma abordagem prática. Rio de Janeiro: Brasport, 2009.

ARMSTRONG, M. A Handbook of Human Resource Management Practice. 10th Edition. Kogan Page Publishing: London, 2006.

BORSATO, R.; CORSO, L. L. Aplicação de Inteligência Artificial e ARIMA na Previsão de Demanda no setor metal mecânico. Scientia Cum Industria. v. 7, n. 2, p. 165-176, 2019. DOI: https://doi.org/10.18226/23185279.v8iss2p24

CORRAR, L. J.; THEÓFILO, C. R. et al. Pesquisa operacional para decisão em contabilidade e administração. São Paulo, Atlas, 2004.

SILVA, J. A. B. Customer service logistics como estratégia organizacional: um estudo de caso em uma multinacional. Brazilian Journal of Production Engineering. v. 4, n. 4, p. 226-244, 2018.

FAVARO, L.A. et al. Otimização e balanceamento de uma linha de montagem de veículos utilitários. Anais do XXXIII Encontro Nacional de Engenharia de Produção (ENEGEP), 2013. DOI: https://doi.org/10.14488/enegep2021_tn_sto_354_1824_42050

GONÇALVES, P.S. Logística e cadeia de suprimentos: o essencial. Barueri, SP: Manole, 2013.

GRAEMI, A. R.; PEINADO, J. Administração da Produção: operações industriais e de serviços. Curitiba: UnicenP, 2007.

GROOVER, M.P. Automation, production, and computer-integrated manufacturing. Prentice Hall. 2. ed. New Jersey, 2000.

HAIR JUNIOR, J. F. et al. Análise multivariada de dados. 5. ed. Porto Alegre: Bookman, 2005.

HAYKIN, S. Redes Neurais: princípios e práticas. 2. ed. Porto Alegre: Bookman, 2001.

HILLIER, F. S.; LIEBERMAN, G. J. Introdução à pesquisa operacional. 8. ed. Porto Alegre: AMGH, 2010.

KAHN, K. An Exploratory Investigation of New Product Forecasting Practices. The Journal of Product Innovation Management. v. 19, n. 2, p. 133-143, 2002. DOI: https://doi.org/10.1111/1540-5885.1920133

KOTLER, P. Marketing management: analysis, planning, implementation and control. New Jersey: Prentice-Hall, 1991.

KUO, R.J.; XUE, K.C. A decision support system for sales forecasting through fuzzy neural networks with asymmetric fuzzy weights. The Netherlands: Elsevier, 1998. DOI: https://doi.org/10.1016/s0167-9236(98)00067-0

LOHMANN, S., LACERDA, D. P., CAMARGO, L. F. R., DRESCH, A. Operations strategy and analysis of competitive criteria: a case study of a food business. Gestão & Produção, v. 26, n. 3, p. 2290, 2019. DOI: https://doi.org/10.1590/0104-530x2290-19

MARTINS, Gilberto de Andrade. Manual para elaboração de monografias e dissertações. 3 ed. São Paulo: Atlas, 1994.

MIRANDA, R. G.; GERBER, J. Z; BORNIA, A. C.; FREIRES, F. G. M. Método estruturado para o processo de planejamento da demanda nas organizações. In: Congresso Internacional de Administração, 2011. Anais [...], Ponta Grossa, 2011.

MOON, M.; MENTZER, J.; SMITH, C.; GARVER, M. Seven Keys to Better Forecasting. Business Horizons. v. 41, n. 5, p. 44-52, 1998. DOI: https://doi.org/10.1016/s0007-6813(98)90077-5

SILVA, E. M.; SILVA, E. M.; GONÇALVES, V.; MUROLO, A. C. Pesquisa Operacional: programação linear. 3. ed. São Paulo: Atlas, 1998. DOI: https://doi.org/10.14488/enegep2021_tn_sto_357_1845_42916

SILVA, G. G. M. P. et al., A manufatura enxuta aplicada no setor de serviços: um estudo de caso. In: XXVII ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO - ENEGEP. Foz do Iguaçu, 2007.

SLACK, N.; CHAMBERS, S.; HARLAND, C. Administração da Produção. São Paulo: Atlas, 2008.

SOUZA, R. C. Modelos Estruturais para Previsão de Séries Temporais: Abordagens Clássica e Bayesiana. In: COLÓQUIO BRASILEIRO DE MATEMÁTICA, 17., Rio de Janeiro, 1989. DOI: https://doi.org/10.11606/d.55.2011.tde-06062011-164536

TAPPING, D.; LUYSTER, T.; SHUKER, T. Value Stream Management: eight steps to planning, mapping, and sustaining lean improvements. New York: Productivity Press, 2002. DOI: https://doi.org/10.1108/tqmm.2004.16.1.68.2

TUBINO, D. F. Planejamento e Controle da Produção: Teoria e Prática. São Paulo: Atlas, 2007.

VITORINO, C. M. Logística. São Paulo: Pearson Education do Brasil, 2012.

WANKE, P. E. Logística para MBA em 12 lições. São Paulo: Atlas, 2010.

WHEELWRIGHT, S. C.; MAKRIDAKIS, S. Forecasting Methods for Management. 4. ed. New York: John Wiley & Sons Inc, 1985.

WINTERS, P. R. Forecasting Sales by Exponentially Weighted Moving Averages. Management Science, v. 6, n. 3, p. 324-342, 1960. DOI: https://doi.org/10.1287/mnsc.6.3.324

Published

2023-03-03

How to Cite

Moraes, N. T., & Corso, L. L. (2023). Optimized line balancing application considering demand forecast and artificial neural networks. Revista Produção Online, 22(2), 2886–2912. https://doi.org/10.14488/1676-1901.v22i2.4734

Issue

Section

Papers