The main employment sectors in the South/Southwest of Minas Mesoregion

a multivariate analysis

Authors

  • Pedro José Papandréa Universidade Federal de Alfenas (UNIFAL), Alfenas, MG, Brasil.
  • Alex de Sousa Pereira Universidade Federal de Alfenas (UNIFAL), Alfenas, MG, Brasil.
  • Anderson Paulo de Paiva Universidade Federal de Itajubá (UNIFEI), Itajubá, MG, Brasil.

DOI:

https://doi.org/10.14488/1676-1901.v22i4.4716

Keywords:

Job, Unemployment, Minas Gerais, Cluster Analysis and Principal Components

Abstract

The present work is a quantitative empirical analysis that aimed to verify how the employability indexes behave (hired workers, dismissed workers and number of accumulated workers), for the municipalities of the Mesoregion of the South/Southwest of Minas Gerais. Thus, multivariate analysis techniques were used in order to reach the objective proposed by this study. The data used comprise a set of 14 variables, taken directly from the General Register of Employed and Unemployed (CAGED) in the year 2020, with information referring to the sectors of the economy: agriculture, commerce, civil construction, industry and services. The established analyzes were performed using the Python programming language. Among the multivariate methods used, principal components analysis (PCA) and cluster analysis (AA) were used using hierarchical (Ward) and non-hierarchical (k-means) methods. The results obtained showed that the municipalities of Varginha, Poços de Caldas, Pouso Alegre and Extrema were the municipalities that presented the highest employability index for most sectors of the economy. Likewise, it was observed that municipalities such as Monte Belo, Carmo da Cachoeira and Conceição do Rio Verde were expressive in generating employment in the agricultural sector. Finally, Alfenas, Três Pontas and São Sebastião do Paraíso were municipalities that presented high rates of employability in all the analyzed sectors.

Downloads

Download data is not yet available.

References

ANDRADE, R. G. R. A expansão da cafeicultura em Minas Gerais: da intervenção do Estado à liberação do mercado. 1994. 173 f. Dissertação (Mestrado em Economia) - Universidade Federal de Minas Gerais, Belo Horizonte, 1994.

BHALERAO, Rajeev S. et al. Principal component analysis of event-by-event fluctuations. Physical review letters, v. 114, n. 15, p. 152301, 2015.

BOUROCHE, Jean-Marie; SAPORTA, Gilbert; PENCHEL, M. Análise de dados. Rio de Janeiro. Zahr Editores, 1982.

CAGED, 2020. Programa de disseminação das estatísticas do trabalho. CAGED, 2021. Disponível em: http://pdet.mte.gov.br/novo-caged. Acesso em: 2 set. 2021.

CRESWELL, John W.; CLARK, Vicki L. Pesquisa de Métodos Mistos: Série Métodos de Pesquisa. Penso Editora, 2015.

DA CUNHA, André Luiz Barbosa Nunes; DE MORAES MODOTTI, Maíra; SETTI, José Reynaldo. Classificação de caminhões através de agrupamento por análise de cluster. In: XXII CONGRESSO DE PESQUISA E ENSINO EM TRANSPORTES DA ANPET. Anais [...], Fortaleza/CE. 2008. p. 1447-1459.

FERREIRA, Daniel Furtado. Estatística multivariada. Lavras: Editora Ufla, 2008.

GRIMM, Laurence G.; YARNOLD, Paul R. Reading and understanding MORE multivariate statistics. American psychological association, 2000.

HAIR, Joseph F. et al. Análise multivariada de dados. Bookman editora, 2009.

HOTELLING, Harold. Analysis of a complex of statistical variables into principal components. Journal of educational psychology, v. 24, n. 6, p. 417, 1933.

INSTITUITO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Divisão Regional do Brasil. IBGE, 2021. Disponível em: https://www.ibge.gov.br/geociencias/organizacao-doterritorio/divisao-regional/15778-divisoes-regionais-do-brasil.html?=&t=o-que-e. Acesso em: 2 set. 2021.

JOHNSON, Richard Arnold et al. Applied multivariate statistical analysis. Upper Saddle River, NJ: Prentice hall, 2002.

JOLLIFFE, I. Principal component analysis. Wiley Online Library, 2002.

JOLLIFFE, Ian T. Discarding variables in a principal component analysis. I: Artificial data. Journal of the Royal Statistical Society: Series C (Applied Statistics), v. 21, n. 2, p. 160-173, 1972.

KAISER, Henry F. The varimax criterion for analytic rotation in factor analysis. Psychometrika, 1958, v. 23, n. 3, p. 187-200.

KARHUNEN, Juha; JOUTSENSALO, Jyrki. Generalizations of principal component analysis, optimization problems, and neural networks. Neural Networks, v. 8, n. 4, p. 549-562, 1995.

KUBRUSLY, Lucia Silva; SABOIA, João Luiz Maurity. Uma análise multivariada da população ocupada nas regiões metropolitanas brasileiras. Ensaios FEE, v. 27, n. 2, 2006.

LIN, Jing; ZHANG, Aimin. Fault feature separation using wavelet-ICA filter. NDT & e International, v. 38, n. 6, p. 421-427, 2005.

MOURA, Felipe Moretto; DO VALE, Ana Rute. Mercado de trabalho nos pequenos municípios e polarização regional: uma análise sobre Divisa Nova e Alfenas, no Sul/Sudoeste de Minas. Espaço em Revista, v. 20, n. 2, p. 1-18, 2018.

PAIVA, AP de. Metodologia de superfície de resposta e análise de componentes principais em otimização de processos de manufatura com múltiplas respostas correlacionadas. Universidade Federal de Itajubá, 2006.

PRATES, Ângelo Marcos Queiróz et al. A dinâmica da estrutura produtiva da região sul/sudoeste de Minas Gerais nos anos recentes: apontamentos de sua inserção na economia mineira. In: XIV SEMINÁRIOSOBRE A ECONOMIA MINEIRA. Anais [...]. Cedeplar, Universidade Federal de Minas Gerais. 2010.

PYTHON. The Python programming language. Python, 2021. Disponível em: https://docs.python.org/3/reference. Acesso em: 28 ago. 2021.

RENCHER, A. C. Methods of multivariate analysis. [S. l.]: John Wiley & Sons, 2003.

SWINIARSKI, R. W.; SKOWRON, A. Rough set methods in feature selection and recognition. Pattern recognition letters, v. 24, n. 6, p. 833-849, 2003.

VICINI, Lorena. Análise multivariada: da teoria à prática. 2005.

WANG, X.; PALIWAL, K. K. Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition. Pattern recognition, v. 36, n. 10, p. 2429–2439, 2003.

ZAÏANE, O. R.; FOSS, A.; LEE, C.-H.; WANG, W. On data clustering analysis: Scalability, constraints, and validation. In: ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING. [S.l.]: Springer, 2002. p. 28–39.

Published

2023-05-12

How to Cite

Papandréa, P. J., Pereira, A. de S., & Paiva, A. P. de. (2023). The main employment sectors in the South/Southwest of Minas Mesoregion: a multivariate analysis. Revista Produção Online, 22(4), 3528–3554. https://doi.org/10.14488/1676-1901.v22i4.4716

Issue

Section

Papers