Integrated management analysis of production performance, maintenance, and PDCA Cycle
a case study of the IPCC mining process
DOI:
https://doi.org/10.14488/1676-1901.v22i2.4661Keywords:
Iron mining, KPIs, Mining process, Quality management, Loss profileAbstract
The performance measure of a production can be determined by applying tools that can evaluate the relationship between production functions, process quality and maintenance, and propose an integrated management model. The objective of this study was to propose the application of the PDCA cycle and to use its analysis to minimize the operational impacts that lead to non-compliance with the goals established in the Production Master Plan compared to the actual one. The motivational problem at work is related to the adoption of the innovative IPCC mining method by a Brazilian mining company, which in 2019 had a production plan of 18,051,425.8 tons; however, it produced 13,526,587.5. It was possible to observe the good performance of the action plan regarding the results of the indicators and standardization of the processes. In summary, the indicators showed an average performance higher than expected for 2020. As for variability, the indicators showed a decrease in the standard deviation between performance and schedule. It is noteworthy that the PU, productivity and average production indicators showed an upward trend.
Downloads
References
ABBAS, J. Impact of total quality management on corporate green performance through the mediating role of corporate social responsibility. Journal of Cleaner Production, 242, 118458, 2020.
ABBAS, J. Impact of total quality management on corporate sustainability through the mediating effect of knowledge management. Journal of Cleaner Production, v. 244, 118806, 2020. DOI: https://doi.org/https://doi.org/10.1016/j.jclepro.2019.118806
BARRATT, T.; ELLEM, B. Temporality and the evolution of GPNs: Remaking BHP’s Pilbara iron ore network. Regional Studies, v. 53, n. 11, 2019, 1555-1564. DOI: https://doi.org/10.1080/00343404.2019.1590542
BEN-DAYA, M.; DUFFUAA, S. O.; Raouf, A.; KNEZEVIC, J.; AIT-KADI, D. Handbook of maintenance management and engineering, v. 7, 2009. DOI: https://link.springer.com/book/10.1007%2F978-1-84882-472-0
BOKRANTZ, J.; SKOOGH, A.; BERLIN, C.; WUEST, T.; STAHRE, J. Smart Maintenance: a research agenda for industrial maintenance management. International Journal of Production Economics, 224, 107547, 2020. DOI: https://doi.org/10.1016/j.ijpe.2019.107547
CAMPOS, J. T. D. G. A. E. A. C.; FERREIRA, A. M. S.; FREIRES, F. G. M. Time variability management and trade-off analysis of quality, productivity, and maintenance efficiency. Brazilian Journal of Operations & Production Management, v. 18, n. 4, p. 1-19, 2021. DOI: https://doi.org/https://doi.org/10.14488/BJOPM.2021.018
CHIARINI, A. Industry 4.0, quality management and TQM world. A systematic literature review and a proposed agenda for further research. The TQM Journal, 2020. DOI: https://doi.org/10.1108/TQM-04-2020-0082
CLUNE, C.; O’DWYER, B. Framing engagement that resonates: Organizing advocacy for corporate social and environmental accountability. European Accounting Review, v. 29, n. 5, p. 851-875, 2020. DOI: https://doi.org/https://doi.org/10.1080/09638180.2020.1746374
DARESTANI, S. A., GANJI, M.; IMANNEZHAD, R. What are the key determinants of maintenance performance? Production, 30, 2020. DOI: https://doi.org/10.1590/0103-6513.20190155
DRUMMOND, P.; ARAUJO, F.; BORGES, R. Meeting halfway: Assessing the differences between the perceptions of ERP implementers and end-users. Business Process Management Journal, 2017. DOI: https://doi.org/https://doi.org/10.1108/BPMJ-05-2016-0107
FERNANDES, R. D. S.; SOUSA, L. R. C. D.; SANTOS, T. L. D. Analysis, investigation and evaluation of quality management in the mining process: a case study on divergencies in iron ore stock deviations. Revista Produção Online, v. 21, n. 3, p. 770-793, 2021. DOI: https://doi.org/10.14488/1676-1901.v21i3.4252
GACKOWIEC, P.; PODOBIŃSKA-STANIEC, M.; BRZYCHCZY, E.; KÜHLBACH, C.; ÖZVER, T. Review of key performance indicators for process monitoring in the mining industry. Energies, v. 13, n. 19, p. 5169, 2020. DOI: https://doi.org/10.3390/en13195169
GARCIA, S.; CINTRA, Y. C.; DE SOUZA RIBEIRO, M.; DIBBERN, B. R. S. Qualidade da divulgação socioambiental: um estudo sobre a acurácia das informações contábeis nos relatórios de sustentabilidade. Revista Contemporânea de Contabilidade, v. 12, n. 25, p. 67-94, 2015. DOI: https://doi.org/https://doi.org/10.5007/2175-8069
ISO 9001. Quality management systems - Fundamentals and vocabulary. In (pp. 59). Rio de Janeiro: ABTN Catalogo, 2015.
JURAN, J. M. The quality trilogy. Quality progress, v. 19, n. 8, 1986, p. 19-24.
LOVÓN-CANCHUMANI, G. A.; LIMA, F. M. D. R. D. S.; OLIVEIRA, P. P. D. Avaliação do ciclo de vida na mineração: estudos da produção de minério de ferro. In C. C. Peiter (Ed.), Série Estudos e Documentos. Centro de Tecnologia Mineral - Ministérios da Ciência, Tecnologia e Inovação, 2015. http://mineralis.cetem.gov.br/bitstream/cetem/1923/1/sed-89.pdf
MOHAMMADI, M.; RAI, P.; GUPTA, S. Performance evaluation of bucket based excavating, loading and transport (BELT) equipment–an OEE approach. Archives of Mining Sciences, v. 62, n. 1, 2017. DOI: https://doi.org/http://dx.doi.org/10.1515/amsc-2017-0008
NAIRN, R. W.; LABAR, J. A.; OXENFORD, L. R.; SHEPHERD, N. L.; HOLZBAUER-SCHWEITZER, B. K.; ARANGO, J. G.; TANG, Z.; DORMAN, D. M.; FOLZ, C. A.; MCCANN, J. I. Toward sustainability of passive treatment in legacy mining watersheds: operational performance and system maintenance. Proc. IMWA 2020.
NEHRING, M.; KNIGHTS, P.; KIZIL, M.; HAY, E. A comparison of strategic mine planning approaches for in-pit crushing and conveying, and truck/shovel systems. International journal of mining science and technology, v. 28, n. 2, p. 205-214. DOI: https://doi.org/https://doi.org/10.1016/j.ijmst.2017.12.026
NICHOLLS, J. A. Integrating financial, social and environmental accounting. Sustainability Accounting, Management and Policy Journal, v. 11, 4, p.745-769, 2020. DOI: https://doi.org/https://doi.org/10.1108/SAMPJ-01-2019-0030
NUNES, R. A.; DELBONI, H.; TOMI, G. D.; INFANTE, C. B.; ALLAN, B. A decision-making method to assess the benefits of a semi-mobile in-pit crushing and conveying alternative during the early stages of a mining project. REM-International Engineering Journal, 72, p. 285-291, 2019. DOI: https://doi.org/https://doi.org/10.1590/0370-44672018720109
OSANLOO, M.; PARICHEH, M. In-pit crushing and conveying technology in open-pit mining operations: a literature review and research agenda. International Journal of Mining, Reclamation and Environment, v. 34, n. 6, p. 430-457, 2020. DOI: https://doi.org/https://doi.org/10.1080/17480930.2019.1565054
OTTO, T.; MUSINGWINI, C. A compliance driver tree (CDT) based approach for improving the alignment of spatial and intertemporal execution with mine planning at open-pit mines. Resources Policy, 69, 101826, 2020. DOI: https://doi.org/10.1016/j.resourpol.2020.101826
PALADINI, E. P. Gestão e avaliação da qualidade: uma abordagem prática. São Paulo: Atlas.
PARICHEH, M.; OSANLOO, M. Concurrent open-pit mine production and in-pit crushing–conveying system planning. Engineering optimization, v. 52, n. 10, p. 1780-1795. DOI: https://doi.org/https://doi.org/10.1080/0305215X.2019.1678150
PARMENTER, D. Key performance indicators: developing, implementing, and using winning KPIs. John Wiley & Sons, 2015.
PEREIRA, L.; NUNES, N. Performance evaluation in non‐intrusive load monitoring: Datasets, metrics, and tools—A review. Wiley Interdisciplinary Reviews: data mining and knowledge discovery, v. 8, n. 6, e1265, 2018. DOI: https://doi.org/https://doi.org/10.1002/widm.1265
REICHL, C., SCHATZ, M.; ZSAK, G. World mining data. Minerals Production Inter-national Organizing Committee for the World Mining Congresses, v. 32, n. 1, p. 1-261, 2014. DOI: http://www.world-mining-data.info/wmd/downloads/PDF/WMD2020.pdf
ROCHA, C. S.; CARDOSO, E. L. D. S. S.; FERNANDES, R. D. S.; BRANCO, N. C. N. M.; LUZ, R. M. D. N. Quality assessment of divergences causes in weighing copper ore at a mining company in the amazon region. International Journal of Development Research, v. 11, n. 8, p. 49633-49639, 2021. DOI: https://doi.org/10.37118/ijdr.22578.08.2021
SANE, R. Beneficiation and agglomeration of manganese ore fines (an area so important and yet so ignored). Materials Science and Engineering Conference Series, 2018.
SANTOS, M. S.; PINTO, T. V.; JÚNIOR, Ê. L.; COTA, L. P.; SOUZA, M. J.; EUZÉBIO, T. A. Simheuristic-based decision support system for efficiency improvement of an iron ore crusher circuit. Engineering Applications of Artificial Intelligence, 94, 103789, 2020. DOI: https://doi.org/https://doi.org/10.1016/j.engappai.2020.103789
SHEN, X.; CHEN, L.; XIA, S.; XIE, Z.; QIN, X. Burdening proportion and new energy-saving technologies analysis and optimization for iron and steel production system. Journal of Cleaner Production, 172, p. 2153-2166, 2018. DOI: https://doi.org/https://doi.org/10.1016/j.jclepro.2017.11.204
SILVA, A. S.; MEDEIROS, C. F.; VIEIRA, R. K. Cleaner Production and PDCA cycle: Practical application for reducing the Cans Loss Index in a beverage company. Journal of Cleaner Production, 150, p. 324-338. DOI: https://doi.org/https://doi.org/10.1016/j.jclepro.2017.03.033
SOUSA, J. C. D. C.; FERNANDES, R. D. S.; LUZ, R. M. D. N., SANTOS, I. R. D.; SILVA, B. L. F. D.; SANTOS NETO, I. D. Description of the IPCC mining process and analysis of the profile of productivity losses applied by a mining company in northern Brazil. Reaserch Square, 2022. DOI: https://doi.org/https://doi.org/10.21203/rs.3.rs-1308199/v1
WÅRELL, L. An analysis of iron ore prices during the latest commodity boom. Mineral Economics, v. 31, n. 1, p. 203-216, 2018. https://doi.org/https://doi.org/10.1007/s13563-018-0150-2
XENOS, H. G. Gerenciando a manutenção produtiva: Melhores práticas para eliminar falhas nos equipamentos e maximizar a produtividade. Falconi Editora, 2014.
XU, L.; PENG, X.; PAVUR, R.; PRYBUTOK, V. Quality management theory development via meta-analysis. International Journal of Production Economics, 229, 107759, 2020. DOI: https://doi.org/10.1016/j.ijpe.2020.107759
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Produção Online
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal reserves the right to make spelling and grammatical changes, aiming to keep a default language, respecting, however, the style of the authors.
The published work is responsibility of the (s) author (s), while the Revista Produção Online is only responsible for the evaluation of the paper. The Revista Produção Online is not responsible for any violations of Law No. 9.610 / 1998, the Copyright Act.
The journal allows the authors to keep the copyright of accepted articles, without restrictions
This work is licensed under a Creative Commons License .