Use of discrete events computer simulation and optimization for production scheduling in a company of the plastics industry

Authors

  • Cristina Fabbris Piacentini Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Rio Grande do Sul, Brasil
  • Leandro Gauss Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Rio Grande do Sul, Brasil
  • Maria Isabel Wolf Motta Morandi Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Rio Grande do Sul, Brasil
  • Daniel Pacheco Lacerda Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Rio Grande do Sul, Brasil

DOI:

https://doi.org/10.14488/1676-1901.v22i1.4597

Keywords:

Optimization, Computer simulation, Discrete events, Production scheduling

Abstract

With globalization and increasing market competitiveness, companies need to keep constantly innovating and improving the process’ efficiency. The problem that this work seeks to solve is the high cost generated by the programming inefficiency. Thus, the objective is to propose cost reduction by reducing the work in process, in order to improve the planning of the occupation of machines, distribute preventive maintenance and facilitate decision making. For this, discrete events computational simulation and optimization was used, through the AnyLogic software, to define the scenario of best combination of decision variables. As a result, it was possible to verify in the scenario the possibility of producing beyond demand, and also reduce 96% of the inventories in process. So, at the management level, it was possible to analyze the alternatives, identify possible flaws, correct them and define the one that best met the strategic needs of the company. This considering the possibility of random events and without the need to stop the operation of the factory for testing. At the academic level, this article aggregates into simulation-optimization studies that consider real data from a MTS production.  

Downloads

Download data is not yet available.

References

AMARAN, S. et al. Simulation optimization: a review of algorithms and applications. Annals of Operations Research, v. 240, n. 1, p. 351–380, 2016.

ANLI, O. M.; CARAMANIS, M. C.; PASCHALIDIS, I. C. Tractable supply chain production planning, modeling nonlinear lead time and quality of service constraints. Journal of Manufacturing Systems, v. 26, n. 2, p. 116–134, 2007.

ASSID, M.; GHARBI, A.; HAJJI, A. Production control of failure-prone manufacturing- remanufacturing systems using mixed dedicated and shared facilities. International Journal of Production Economics, v. 224, n. 2019, p. 107549, 2020.

BERRETTA, R. E. Heuristicas para otimização do planejamento da produção em sistemas MRP. 1997. 152f. Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação, Campinas, SP. 1997.

CARDOSO, J.; JOHNER, C. R.; JOHNER, D. M. F. DA S. Aplicação da programação linear para maximização da capacidade produtiva em uma célula de produção de longarinas. In: ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO (ENEGEP), 38., 2018, Maceió. A Engenharia de Produção e suas contribuições para o desenvolvimento do Brasil. Rio de Janeiro: Associação Brasileira de Engenharia de Produção, 2018.

CARVALHO, A. N.; OLIVEIRA, F.; SCAVARDA, L. F. Tactical capacity planning in a real-world ETO industry case: a robust optimization approach. International Journal of Production Economics, v. 180, p. 158–171, 2016.

CAUCHICK-MIGUEL, P. A. et al. Metodologia de Pesquisa para Engenharia de Produção e Gestão de Operações. 3. ed. Rio de Janeiro: Elsevier, 2018.

CHIWIF, L.; MEDINA, A. C. Modelagem e Simulação de Eventos Discretos: teoria & aplicações. 2. ed. São Paulo: [s.n.]. CLARK, J.; DOWNING, D. Estatística Aplicada - Série Essencial. 3. ed. São Paulo: Editora Saraiva, 2010.

COELLI, F. C. Simulação computacional por eventos discretos na otimização do fluxo de pacientes e na caracterização de custos em clínica de mamografia. 2008. Tese (Doutorado em Engenharia Biomédica) – Programa de Pós-Graduação em Engenharia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2008.

CRUZ JR., A. S. DA. Globalização, Inovação e Sistema Internacional: O Brasil e as transformações da economia mundial. Revista FAAC, p. 165–178, 2012.

DIAZ, J. E.; HANDL, J.; XU, D.-L. Integrating meta-heuristics, simulation and exact techniques for production planning of a failure-prone manufacturing system. European Journal of Operational Research, v. 266, n. 3, p. 976–989, 2018a.

DIAZ, J. E.; HANDL, J.; XU, D. L. Integrating meta-heuristics, simulation and exact techniques for production planning of a failure-prone manufacturing system. European Journal of Operational Research, v. 266, n. 3, p. 976–989, 2018b.

DOMINGUES, M. A. S. et al. Otimização do sequenciamento de produção com abordagem just-in-time e tempos de setup dependentes da sequência em uma usina siderúrgica. In: ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO (ENEGEP), 36., 2016, João Pessoa. Contribuições da Engenharia de Produção para melhores práticas de gestão e modernização do Brasil. Rio de Janeiro: Associação Brasileira de Engenharia de Produção, 2016.

EL RAOUI, H.; OUDANI, M.; EL HILALI ALAOUI, A. Coupling Soft Computing, Simulation and Optimization in Supply Chain Applications: Review and Taxonomy. IEEE Access, v. 8, p. 31710–31732, 2020.

FAKHRZAD, M. B.; KHADEMI ZARE, H. Combination of genetic algorithm with Lagrange multipliers for lot-size determination in multi-stage production scheduling problems. Expert Systems with Applications, v. 36, n. 6, p. 10180–10187, 2009.

FALCO, J. G. Estatística Aplicada. Cuiabá: EdUFMT, 2008.

GANSTERER, M.; ALMEDER, C.; HARTL, R. F. Simulation-based optimization methods for setting production planning parameters. International Journal of Production Economics, v. 151, p. 206–213, 2014.

GAVIRA, M. O. Computacional como uma ferramenta de aquisição de conhecimento. 2003. Dissertação (Mestrado em Engenharia de Produção) – Escola de Engenharia de São Carlos, Universidade de São Paulo, São Paulo, 2003.

GNONI, M. G. et al. Production planning of a multi-site manufacturing system by hybrid modelling: A case study from the automotive industry. International Journal of Production Economics, v. 85, n. 2, p. 251–262, Feb. 2003.

GRABENSTETTER, D. H.; USHER, J. M. Sequencing jobs in an engineer-to-order engineering environment. Production and Manufacturing Research, v. 3, n. 1, p. 201–217, Apr. 2015.

HATZIKONSTANTINOU, O.; ATHANASIOU, E.; PANDELIS, D. G. Real-time production scheduling in a multi-grade PET resin plant under demand uncertainty. Computers and Chemical Engineering, v. 40, p. 191–201, May 2012.

HOADLEY, B. Asymptotic properties of maximum likelihood estimators for the independent not identically distributed case. The Annals of Mathematical Statistics, v. 42, n. 6, p. 1977-1991, 1971.

ILGIN, M. A.; TUNALI, S. Joint optimization of spare parts inventory and maintenance policies using genetic algorithms. International Journal of AdvancedManufacturing Technology, v. 34, n. 5-6, p. 594-604, 2007.

JAHANGIRIAN, M. et al. Simulation in manufacturing and business: A review. European Journal of Operational Research, v. 203, n. 1, p. 1–13, 2010.

JUAN, A. A. et al. A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems. Operations Research Perspectives, v. 2, p. 62-72, Dec. 2015.

KLEIJNEN, J. P. C.; WAN, J. Optimization of simulated systems: OptQuest and alternatives. Simulation Modelling Practice and Theory, v. 15, n. 3, p. 354-362, Mar. 2007.

KODINARIYA, T. M.; MAKWANA, D. P. R. Review on determining of cluster in K-means clustering review on determining number of cluster in K-means clustering. International Journal of Advanced Research in Computer Science and Management Studies, v. 1, n. 6, p. 90–95, 2013.

LAW, A. M.; KELTON, W. D. Simulation Modeling & Analysis. 2 ed. Singapore: McGraw-Hill, 1991.

LEE, C. K. H. A review of applications of genetic algorithms in operations management. Engineering Applications of Artificial Intelligence, v. 76, n. August, p. 1–12, 2018.

LIKAS, A.; VLASSIS, N.; J. VERBEEK, J. The global k-means clustering algorithm. Pattern Recognition, v. 36, n. 2, p. 451–461, 2003.

MOLINA, C.; RESENDE, J. Atividades do planejamento e controle da produção (PCP). Revista Cientiífica Eletrônica de Administração, v. 6, n. 11, p. 1-5, 2006.

MONOSTORI, L. et al. Digital enterprise solution for integrated production planning and control. Computers in Industry, v. 61, n. 2, p. 112-126, 2010.

MONTALVAO, E. H. R. et al. Um modelo de programação inteira para o problema de. In: ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO (ENEGEP), 31., 2011, Belo Horizonte. Inovação tecnológica e propriedade intelectual: desafios da engenharia de produção na consolidação do brasil no cenário econômico mundial. Rio de Janeiro: Associação Brasileira de Engenharia de Produção, 2011.

MONTGOMERY, D. C.; RUNGER, G. C.; HUBELE, N. F. Estatística aplicada à engenharia. 2 ed. Barueri: LTC, 2004.

MORAES, D. G. DE; FERREIRA, C. V. Linear : Estudo De Caso Em Uma Indústria De Esquadrias De Alumínio. Revista Fatec Zona Sul, v. 5, n. 4, p. 26–37, 2019.

MORANDI, Maria Isabel Wolf Motta; CAMARGO, Luis Felipe Riehs. Revisão sistemática da literatura. In: DRESH, A.; LACERDA, D. P.; JÚNIOR, J. A. V. A. Design Science Research. Porto Alegre: Bookman, 2015.

MOTEGI, S. IT in risk management. Journal of the Society of Mechanical Engineers, v. 111, n. 1081, p. 984-985, 2008.

PEINADO, J.; GRAEML, A. R. Administração da Produção: operações industriais e de serviços. Curitiba: UnicenP, 2007.

PEREIRA, M. M.; FRAZZON, E. M. A data-driven approach to adaptive synchronization of demand and supply in omni-channel retail supply chains. International Journal of Information Management, v. 57, p. 102-165, Apr. 2021.

PERGHER, I.; ALMEIDA, A. T. A multi-attribute decision model for setting production planning parameters. Journal of Manufacturing Systems, v. 42, p. 224-232, Jan. 2017.

SINGH, R.; MATHIRAJAN, M. Experimental investigation for performance assessment of scheduling policies in semiconductor wafer fabrication: a simulation approach. International Journal of Advanced Manufacturing Technology, v. 99, n. 5-8, p. 1503-1520, 2018.

SLACK, N.; CHAMBERS, S.; JOHNSTON, R. Administracão da Produção. 2. ed. São Paulo: Atlas S.A., 2002.

SOMAN, C. A.; VAN DONK, D. P.; GAALMAN, G. J. C. Capacitated planning and scheduling for combined make-to-order and make-to-stock production in the food industry: An illustrative case study. International Journal of Production Economics, v. 108, n. 1–2, p. 191–199, July 2007.

STEVENSON, Z.; FUKASAWA, R.; RICARDEZ-SANDOVAL, L. Evaluating periodic rescheduling policies using a rolling horizon framework in an industrial-scale multipurpose plant. Journal of Scheduling, v. 23, n. 3, p. 397-410, June 2020.

TEERASOPONPONG, S.; SOPADANG, A. A simulation-optimization approach for adaptive manufacturing capacity planning in small and medium-sized enterprises. Expert Systems with Applications, v. 168, 2021.

TIAN, F. et al. Simulation and optimization of vehicle scheduling in flight logistic support process based on Arena. In: INTERNATIONAL CONFERENCE ON

COMPUTER APPLICATION AND SYSTEM MODELING (ICCASM), 2010, Taiyuan. Anais [...]. Nova Jersey: IEEE, p. 446-449, 2010.

VIEIRA, A. A. C. et al. Simulation of an automotive supply chain using big data. Computers and Industrial Engineering, v. 137, n. August, p. 106033, 2019.

YEGUL, M. F. et al. Improving configuration of complex production lines via simulation- based optimization. Computers and Industrial Engineering, v. 109, p. 295–312, 2017.

YOON, H. J.; KIM, J. G. Heuristic scheduling policies for a semiconductor wafer fabrication facility: Minimizing variation of cycle times. International Journal of Advanced Manufacturing Technology, v. 67, n. 1–4, p. 171–180, 2013.

Published

2023-01-15

How to Cite

Piacentini, C. F., Gauss, L., Morandi, M. I. W. M., & Lacerda, D. P. (2023). Use of discrete events computer simulation and optimization for production scheduling in a company of the plastics industry. Revista Produção Online, 22(1), 2510–2545. https://doi.org/10.14488/1676-1901.v22i1.4597

Issue

Section

Papers