Application of machine learning to increase the precision of na automated swine nutrition system
DOI:
https://doi.org/10.14488/1676-1901.v22i1.4586Keywords:
Machine Learning, Artificial Intelligence, Artificial Neural Network, Linear Regression, Swine NutritionAbstract
With the constant computational evolution, the feasibility of implementing machine learning models has been developing in several areas of activity. One of the areas of great relevance for national economic development is agribusiness, and among its sub-areas, pig farming has a representative share of the market. Among the swine production cost items, the one with the greatest representation and the need for precise control is feed consumption. Aiming at increasing the accuracy of an automated swine nutrition system, this article aims to demonstrate a composition of supervised artificial intelligence model to predict the most relevant variables to achieve the smallest possible error between the programed dosage and the dosage performed by the equipment. The considered machine learning model is linear regression. To verify the accuracy and performance of the models, the main error metrics of quantitative analysis are used. The results presented in the paper indicate the linear regression machine learning model achieves a better generalization of
predicted variable and can reduce the absolute error of the dosage of each animal treatment, in average, by 7,4 times.
Downloads
References
AMOURI, Amar; ALAPARTHY, Vishwa T.; MORGERA, Salvatore D.. A Machine Learning Based Intrusion Detection System for Mobile Internet of Things. Sensors, [S.L.], v. 20, n. 2, p. 461, 14 jan. 2020. DOI http://dx.doi.org/10.3390/s20020461.
BASHA, Rani Fathima Kamal; BHARATHI, M.L; VENUSAMY, Kanagaraj. Dynamic prediction of energy and power usage cost using linear regression-machine learning analysis. Journal Of Physics: Conference Series, [S.L.], v. 1921, p. 012067, 2021. IOP Publishing. DOI http://dx.doi.org/10.1088/1742-6596/1921/1/012067.
BEROZA, G. C.; SEGOU, M.; MOUSAVI, S. Mostafa. Machine learning and earthquake forecasting - next steps. Nature Communications, [S.L.], v. 12, n. 1, p. 1-3, 6 ago. 2021. DOI http://dx.doi.org/10.1038/s41467-021-24952-6.
BONSIGNORIO, Fabio; HSU, David; JOHNSON-ROBERSON, Matthew; KOBER, Jens. Deep Learning and Machine Learning in Robotics [From the Guest Editors]. IEEE Robotics & Automation Magazine, [S.L.], v. 27, n. 2, p. 20-21, jun. 2020. DOI http://dx.doi.org/10.1109/mra.2020.2984470.
BURY, F.; DELAERE, C. Matrix element regression with deep neural networks - Breaking the CPU barrier. Journal Of High Energy Physics, [S.L.], v. 2021, n. 4, p. 1-26, abr. 2021. Springer Science and Business Media LLC. DOI http://dx.doi.org/10.1007/jhep04(2021)020.
BROWNLEE, Jason. Linear Regression for Machine Learning. 2020. Elaborada por Machine Learning Algorithms. Disponível em:
https://machinelearningmastery.com/linear-regression-for-machine-learning/.Acesso em: 24 fev. 2022.
EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Produção de Suínos, Embrapa Suínos e Aves. 2003. Disponível em: http://www.cnpsa.embrapa.br/SP/suinos/nutricao.html. Acesso em: 06 out. 2021.
FLORES, B. E. A pragmatic view of accuracy measurement in forecasting. Omega, v. 14, n. 2, p. 93–98, 1986.
GIL, A. C. Como elaborar projetos de pesquisa. 4 ed. São Paulo: Atlas, 2002.
HE, Yuqing; TIEZZI, Francesco; HOWARD, Jeremy; MALTECCA, Christian. Predicting body weight in growing pigs from feeding behavior data using machine learning algorithms. Computers And Electronics in Agriculture, [S.L.], v. 184, p. 106085-106100, 2021. DOI http://dx.doi.org/10.1016/j.compag.2021.106085.
HYNDMAN, R. J.; ATHANASOPOULOS, G. Forecasting: principles and practice. O’Texts, 2018.E-book.
IGHALO, Joshua O.; ADENIYI, Adewale George; MARQUES, Gonçalo. Application of linear regression algorithm and stochastic gradient descent in a machine‐learning environment for predicting biomass higher heating value. Biofuels, Bioproducts and Biorefining, [S.L.], v. 14, n. 6, p. 1286-1295, 2020. DOI: http://dx.doi.org/10.1002/bbb.2140.
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Resultados Definitivos Censo Agro 2017, Portal IBGE, 2017. Disponível em: https://censoagro2017.ibge.gov.br/templates/censo_agro/resultadosagro/pecuaria.html?localidade=0&tema=1. Acesso em: 06 out. 2021.
JORDAN, M. I.; MITCHELL, T. M. Machine learning: trends, perspectives, and prospects. Science, [S.L.], v. 349, n. 6245, p. 255-260, jul. 2015. http://dx.doi.org/10.1126/science.aaa8415.
KAGERMANN, H.; LUKAS, W.; WAHLSTER, W. Industrie 4.0: Mit dem Internet der Dinge auf dem Wegzur 4. Industriell en Revolution. VDI Nachrichten, v. 13, n. 1, p. 2-3, 2011.
LAW, Rob. Back-propagation learning in improving the accuracy of neural network- based tourism demand forecasting. Tourism Management, [S.L.], v. 21, n. 4, p. 331-340, 2000. DOI http://dx.doi.org/10.1016/s0261-5177(99)00067-9.
LEE, Woongsup; HAM, Younghwa; BAN, Tae-Won; JO, Ohyun. Analysis of Growth Performance in Swine Based on Machine Learning. IEEE Access, [S.L.], v. 7, p. 161716-161724, 2019. DOI http://dx.doi.org/10.1109/access.2019.2951522.
MAKRIDAKIS, S. Accuracy concerns measures: theoretical and practical concerns. Internationaljournalofforecasting, v. 9, p. 527–529, 1993.
MARCATO, Simara Márcia; LIMA, Gustavo Júlio Mello Monteiro de. Efeito da restrição alimentar como redutor do poder poluente dos dejetos de suínos. Revista Brasileira de Zootecnia, [S.L.], v. 34, n. 3, p. 855-863, jun. 2005. DOI http://dx.doi.org/10.1590/s1516-35982005000300017.
MARTINS, P.C., ALBUQUERQUE, M.P.; MACHADO, Mesquita, A. A. Implicações da Imuno castração na Nutrição de Suínos e nas características de Carcaça. Archivos de Zootecnia. 2013, 62, 105-118. Disponível em: https://www.redalyc.org/articulo.oa?id=49558826008
MUHURI, P. K.; SHUKLA, A. K.; ABRAHAM, Ajith. Industry 4.0: a bibliometric analysis and detailed overview. Engineering Applications Of Artificial Intelligence, [S.L.], v. 78, p. 218-235, 2019.http://dx.doi.org/10.1016/j.engappai.2018.11.007.
NAKAGAWA, Elisa Yumi; ANTONINO, Pablo Oliveira; SCHNICKE, Frank; KUHN, Thomas; LIGGESMEYER, Peter. Continuous Systems and Software Engineering for Industry 4.0: a disruptive view. Information And Software Technology, [S.L.], v. 135, p. 106562-106566, 2021. DOI http://dx.doi.org/10.1016/j.infsof.2021.106562.
NEWELL, Robert; NEWMAN, Lenore; MENDLY-ZAMBO, Zsofia. The Role of Incubators and Accelerators in the Fourth Agricultural Revolution: A Case Study of Canada. Agriculture, v. 11, p. 1-15, 2021. DOI http://doi.org/10.3390/agriculture11111066.
PAIALUNGA, Piero. Deep Learning vs Linear Regression: theoretical differences and hands on examples about MLP and linear regress or in a machine learning problem. Theoretical differences and hands on examples about MLP and Linear Regressor in a Machine Learning problem.. 2022. Elaborada por Towards Data Science. Disponível em:https://towardsdatascience.com/deep-learning-vs-linear- regression-ea74aca115ea. Acesso em: 24 fev. 2022.
SCHUH, G.et al.,Industrie 4.0 maturity index: managing the digital transformation of companies. Herbert Utz Verlag GmbH, 2017.
SHUKLA, S. K. (Ed.). Industry 4.0–A Confluence of Embedded Artificial Intelligence, Machine Learning, Robotics and Security. 2018.
SRIVASTAVA, Tavish. 11 Important Model Evaluation Metrics for Machine Learning Everyone Should Know. 2019. Elaborada por Analytics Vidhya. Disponível em: https://www.analyticsvidhya.com/blog/2019/08/11-important-model-evaluation-error-metrics/. Acesso em: 24 fev. 2022.
SPANAKI, Konstantina; SIVARAJAH, Uthayasankar; FAKHIMI, Masoud; DESPOUDI, Stella; IRANI, Zahir. Disruptive technologies in agricultural operations: a systematic review of ai-driven agritech research. Annals of Operations Research, [S.L.], p. 1- 34, 2021. DOI http://dx.doi.org/10.1007/s10479-020-03922-z.
SWAMINATHAN, Saishruthi. Linear Regression — Detailed View. 2018. Elaborada por Towards Data Science. Disponível em: https://towardsdatascience.com/linear- regression-detailed-view-ea73175f6e86. Acesso em: 24 fev. 2022.
ZHOU, Lina; PAN, Shimei; WANG, Jianwu; VASILAKOS, Athanasios V.. Machine learning on big data: opportunities and challenges. Neurocomputing, [S.L.], v. 237, p. 350-361, 2017. http://dx.doi.org/10.1016/j.neucom.2017.01.026
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista Produção Online
This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal reserves the right to make spelling and grammatical changes, aiming to keep a default language, respecting, however, the style of the authors.
The published work is responsibility of the (s) author (s), while the Revista Produção Online is only responsible for the evaluation of the paper. The Revista Produção Online is not responsible for any violations of Law No. 9.610 / 1998, the Copyright Act.
The journal allows the authors to keep the copyright of accepted articles, without restrictions
This work is licensed under a Creative Commons License .