Big data in supporting production strategy: public service application

Authors

DOI:

https://doi.org/10.14488/1676-1901.v20i1.3251

Keywords:

From all internet-related technology, data has been made available in the most diverse formats and storage places - Big Data. It supports managerial and strategic visions in a new, dynamic, effective and relevant way, combining factors and tools. Producti

Abstract

From all internet-related technology, data has been made available in the most diverse formats and storage places - Big Data. It supports managerial and strategic visions in a new, dynamic, effective and relevant way, combining factors and tools. Production strategy is a global pattern of decisions that gets guidelines from a business strategy, and is highly dependent on data and information. It has expanded to a general pattern of decisions determining long-term competencies and contributions to the overall strategy (market requirements and operations capabilities). The objective of this article is to present a framework that supports the production strategy using aspects of Big Data. The research method was carried out in three stages: i) bibliographic research; ii) elaboration of a theoretical-conceptual framework; and iii) illustration of the application of the proposed framework. The main contribution was the systematization of a proposal using a consolidated theoretical reference of production strategy and the latest reference on Big Data. The application in a public service generated an expectation of continuity and search by technological means to verify how long the problems would be solved and what the economy came from that deployment.

Downloads

Download data is not yet available.

Author Biographies

Fernando Celso Campos, UNIMEP-FEAU/PPGEP

Faculdade de Engenharia, Arquitetura e Urbanismo - FEAU

Programa de Pós-Graduação em Engenharia de Produção - PPGEP

Área de concentração: Gestão e Estratégias

Alceu Gomes Alves Filho, UFSCar - DEP

BIG DATA NO SUPORTE À ESTRATÉGIA DE PRODUÇÃO: ILUSTRAÇÃO DE APLICAÇÃO EM SERVIÇO PÚBLICODEP - Departamento de Engenharia de Produção

Professor titular da Universidade Federal de São Carlos - UFSCar.

Pesquisas em  planejamento estratégico e estratégia de produção, estratégia tecnológica, organização da produção e gestão da cadeia de suprimentos.

References

AGRAWAL, D.; BERNSTEIN, P.; BERTINO, E.; DAVIDSON, S.; DAYAL, U.. Challenges and Opportunities with Big Data 2011-1. Purdue University. Purdue e-Pubs. Cyber Center Technical Reports. 2011. Disponível em: http://docs.lib.purdue.edu/cctech/1 Acesso em: abr. 2016.

AKTER, S.; WAMBA, S.F. Big Data analytics in e-commerce: a systematic review and agenda for future research. Eletronic Markets, 26, p. 173-194. 2016. https://doi.org/10.1007/s12525-016-0219-0

AKTER, S.; WAMBA, S.F.; GUNASEKARAN, A.; DUBEY, R.; CHILDE, S.J.. How to improve firm performance using Big Data analytics capability and business strategy alignment? International Journal of Production Economics, 182, p. 113-131. 2016. https://doi.org/10.1016/j.ijpe.2016.08.018

BROWN, B.; CHUI, M.; MANYIKA, J. Are you ready for the era of ‘big data’?. McKinsey Quarterly, v. 4, n. 1, p. 24-35. 2011. https://doi.org/10.1016/j.future.2014.08.007

LIU, C.; YANG, C.; ZHANG, X.; CHEN, JINJUN External integrity verification for outsourced big data in cloud and IoT: A big Picture. Future Generation Computer Systems, v. 49, p. 58–67. 2015.

CHASE, R.B.; JACOBS, F.R.; AQUILANO, N.. Operations management for competitive advantage. 10th ed., McGraw Hill. 2003.

CHEN,M.; MAO, S.; LIU, Y.. Big Data: a survey. Mobile network application. n. 19, p. 171-209. 2014. https://doi.org/10.1007/s11036-013-0489-0

CAMPOS, F. R. A gestão da inovação em serviços intensivos em conhecimento: oportunidades e desafios do Big Data. 2015. 124 p. Dissertação (Mestrado em Política Científica e Tecnológica) – Instituto de Geociências, Universidade Estadual de Campinas, Campinas. 2015.

DAVENPORT, T.H.. Big Data at work: dispelling the myths, uncovering the opportunities. EUA: Harvard Business School Press. 2014.

DAVENPORT, T. H.; BARTH, P.; BEAN, R. How big data is different. MIT Sloan Management Review, v. 54, n. 1, p. 43. 2012.

DE MAURO, A.; GRECO, M.; GRIMALDI,M.. A formal definition of Big Data based on its essential features. Library Review, v. 65, n. 3, p. 122 – 135, 2016. https://doi.org/10.1108/LR-06-2015-0061

DUBEY, R.; GUNASEKARAN, A.; CHILDE, S.J.; WAMBA, S.F.; PAPADOPOULOS, T.. The impact of Big Data on world-class sustainable manufacturing. The International Journal of Advanced Manufacturing Technology, v. 84, p. 631-645, 2016. https://doi.org/10.1007/s00170-015-7674-1

HALPER, F.; KRISHNAN, K.. TDWI Big Data Maturity Model Guide: Interpreting Your Assessment Score. TDWI Benchmark Guide 2013-2014, 2013.

HAYES, R.H.; PISANO, G.; UPTON, D.; WHELLWRIGHT, S.C.. Operation, strategy and technology: pursuing the competitive edge. Wiley. 2004.

HAYES, R.H.; WHELLWRIGHT, S.C.. Restoring our competitive edge: competing through manufacturing. New York: Free. 1984.

HILL, T.. Manufacturing Strategy: text and cases. London: MacMillan Business. 1995.

HöRTE, S.A.; LINDBERG, P.; TUNÄLV, C.. Manufacturing strategies in Sweden. International Journal of Production Research, v. 25, n. 11, p. 1573-1586, 1987.

IBM (2016). What is Big Data? Bringing Big Data to enterprise. Disponível em: www.ibm.com/software/data/bigdata. Acesso em: mar. 2016.

IDC IVIEW. Gantz J; Reinsel D. Extracting value from chaos. IDC iView, p 1–12, jun. 2011.

ISACA (2016). Big Data: Impactos e Benefícios. Disponível em: http://www.isaca.org/Knowledge-Center/Research/ResearchDeliverables/Pages/Big-Data-Impacts-and-Benefits.aspx. Acesso em: mar. 2016.

JELINEK, M.; BERGEY, P.. Innovation as the strategic driver of sustainability: big data knowledge for profit and survival. IEEE Engineering Management Review, v. 41, n. 2, p. 14-22, 2013. https://doi.org/10.1109/EMR.2013.2259978

JOHNSON,G; SCHOLES, K.; WHITTINGTON, R.. Fundamentals of strategy. 1st ed.. Prentice Hall. 2009.

KAMBATLA, K.; KOLLIAS, G.; KUMAR, V.; GRAMA, A.. Trends in Big Data analytics. Journal Parallel Distrib. Comput., n. 74, p. 2561-2573, 2014. https://doi.org/10.1016/j.jpdc.2014.01.003

LIU, C-H.. A Conceptual Framework of Analytical CRM in Big Data Age. International Journal of Advanced Computer Science & Applications, v. 1, n. 6, p. 149-152. 2015. https://doi.org/10.14569/IJACSA.2015.060620

MEYER,A. de; NAKANE, J.; FERDOWS, K.. Flexibility: the next competitive battle: the manufacturing survey. Strategic Management Journal, v. 10, n. 2, p. 135-144, 1989. https://doi.org/10.1002/smj.4250100204

MAYER-SCHÖNBERGER, V.; CUKIER, K.. Big data: a revolution that will transform how we live, work, and think. Reino Unido: Houghton Mifflin Harcourt. 2013.

MAYER-SCHÖNBERGER, V.; CUKIER, K.. Big Data: como extrair volume, variedade, velocidade e valor da avalanche de informação cotidiana. 1. ed. Rio de Janeiro: Elsevier. 2013.

MCAFEE, A.; BRYNJOLFSSON, E.. Big Data: The Management Revolution. Harvard Business Review, October, 1-11. 2012.

MILLS, J.; PLATTS, K.; GREGORY, M.. A framework for the design of manufacturing strategy processes: a contingency approach. International Journal of Operations and Production Management, v. 15, n. 4, p. 17-49, 1995. https://doi.org/10.1108/01443579510083596

NOVO, R. F.. Melhoria nas dimensões competitivas das empresas por meio do uso do Big Data. Dissertação (Mestrado Profissional em Gestão e Tecnologia em Sistemas Produtivos) - Centro Estadual de Educação Tecnológica Paula Souza, São Paulo, 2014.

OLOFSON, C.W.; VILLARS, R.L.; EASTWOOD, M.. Big data: What it is and why you should care. Paper, 2016.

IDC. Analyze the Future, 2011. Disponível em: www.idc.com. Acesso em: mar. 2016.

PAIVA, E.L.; CARVALHO JR., J.M.; FENSTERSEIFER,J.E.. Estratégia de produção e de operações: conceitos, melhores práticas, visão de futuro. 2. ed. Porto Alegre: Bookman. 2009.

PORTER, M.E.. Competitive strategy: techniques for analyzing industries and competitors. New York: Free Press. 1980.

SHENG, J.; AMANKWAH-AMOAH, J.; WANG, X.. A multidisplinary perspective of big data in management research. International Journal of Production Economics, n. 191, p. 97-112, 2017. https://doi.org/10.1016/j.ijpe.2017.06.006

SIDDIQA, A.; HASHEM, I.A.T.; YAQOOB, I.; MARJANI, M.; SHAMSHIRBAND, S.; GANI, A.; NASARUDDIN, F.. A survey of Big Data management: taxonomy and state-the-art. Journal of Network and Computer Applications, n. 71, p. 151-166, 2016. https://doi.org/10.1016/j.jnca.2016.04.008

SIVARAJAH, U.; KAMAL, M.M.; IRANI, Z.; WEERAKKODY, V.. Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, n. 70, p. 263-286, 2017. https://doi.org/10.1016/j.jbusres.2016.08.001

SLACK N.; CHAMBERS, S.; HARLAND, C.; HARRISON, A.; JOHNSTON, H.. Operations management. Pitman Publishing London. 1995.

SLACK N.; BRANDON-JONES, A.; JOHNSTON, R.; BETTS, A.. Operations and processes management: principles and practice for strategic impact. 4th ed. Pearson. 2015.

SLACK N.; LEWIS,M.. Operations strategy. 2nd ed.. Pearson Education Lt.. 2002.

SEO, W.; KIM, N. CHOI, S.. Big Data Framework for Analyzing Patents to Support Strategic R&D Planning. In: DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 14TH INTL CONFERENCE ON PERVASIVE INTELLIGENCE AND COMPUTING, 2ND INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PiCom/DataCom/CyberSciTech). [Proceedings…] 14th Intl C. IEEE, p. 746-753, 2016.

https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.131

WAMBA, S.F.; AKTER, S.; EDWARDS, A.; CHOPIN, G.; GNANZOU, D.. How ‘big data’ can make big impact: findings from a systematic review and a longitudinal case study. International Journal of Production Economics, n. 165, p. 234-246, 2015. https://doi.org/10.1016/j.ijpe.2014.12.031

WAMBA, S.F.; GUNASEKARAN, A.; AKTER, S.; REN, S.J.; DUBEY, R.; CHILDE, S.J.. Big Data analytics and firm performance: effects of dynamic capabilities. Journal of Business Research, n. 70, p. 356-365, 2017. https://doi.org/10.1016/j.jbusres.2016.08.009

WANG, G., GUNASEKARAN, A.; NGAI, E.W.T.; PAPADOPOULOS, T. Big Data analytics in logistics and supply chain management: certain investigations for research and applications. International Journal of Production Economics, n. 176, p. 98-110, 2016. https://doi.org/10.1016/j.ijpe.2016.03.014

Published

2020-03-16

How to Cite

Campos, F. C., & Alves Filho, A. G. (2020). Big data in supporting production strategy: public service application. Revista Produção Online, 20(1), 47–62. https://doi.org/10.14488/1676-1901.v20i1.3251

Issue

Section

Papers