Proposed modified x-bar control chart with asymmetric limits and multiple sampling

Authors

  • Naijela Janaina da Costa Doutoranda em Engenharia de Produção na Universidade Federal de São Carlos – UFSCar - São Carlos
  • Carlos Ivan Mozambani Doutorando em Engenharia de Produção na Universidade Federal de São Carlos – UFSCar - São Carlos. http://orcid.org/0000-0001-7096-8402
  • Celso Luiz Gonçalves Mestre em Engenharia de Produção pela Universidade Federal de São Carlos – UFSCar - São Carlos
  • Pedro Carlos Oprime Professor Doutor na Universidade Federal de São Carlos – UFSCar - São Carlos

DOI:

https://doi.org/10.14488/1676-1901.v17i3.2722

Keywords:

Multiple sampling. Control chart. Asymmetric limits. Variable parameters

Abstract

In this paper we present a proposal of statistical control chart modified with asymmetric limits that use multiple sampling to decide the state of control of the process. Two related themes established the theoretical bases of the presented proposal: control charts designs with variable parameters (pV); and, control charts with fixed parameters (pF). The use of multiple sampling improves the power of detection of special causes and minimizes the risk of stopping the process unduly by the occurrence of type I (false positive) error. It is proposed to use a statistical control chart with asymmetric limits using a non-linear (non-fixed) sampling procedure with three possible decision regions. The proposal considers the possibility of resampling the process. The effects of statistical parameter estimates were also considered in the performance analysis of the proposed chart. The performance metric considered was the mathematical expectation on the average number of samples until detecting a point outside the control limits. Numerical methods were used to find the statistical control limits for a type I error of 0.27%.

Downloads

Download data is not yet available.

References

A.I.A.G. Fundamental Statistical Process Control. Detroit, MI: A.I.A.G, 1991.

AVINADAV, T.; PERLMAN, Y.; CHENG, T. C. E. Economic design of control charts for monitoring batch manufacturing processes. International Journal of Computer Integrated Manufacturing, v. 29, n. 2, p. 212–221, 2016. http://dx.doi.org/10.1080/0951192X.2015.1030699

CASTAGLIOLA, P.; CELANO, G.; CHEN, G. The Exact Run Length Distribution and Design of the S2 Chart When the in-Control Variance Is Estimated. International Journal of Reliability, Quality and Safety Engineering, v. 16, n. 1, p. 23–38, 2009. https://doi.org/10.1142/S0218539309003277

CASTAGLIOLA, P.; CELANO, G.; FICHERA, S. Comparison of the X-bar Chart and the t Chart When the Parameters are Estimated. An International Journal Quality Technology & Quantitative Management, v. 10, n. 1, p. 1–16, 2013. http://dx.doi.org/10.1080/16843703.2013.11673305

CASTAGLIOLA, P.; MARAVELAKIS, P. E. A CUSUM control chart for monitoring the variance when parameters are estimated. Journal of Statistical Planning and Inference, v. 141, n. 4, p. 1463–1478, 2011. https://doi.org/10.1016/j.jspi.2010.10.013

CHAKRABORTI, S. Run length, average run length and false alarm rate of Shewhart X-bar chart: exact derivations by conditioning. Communications in Statistics, v.28, n.7, p. 61-81, 2000. http://dx.doi.org/10.1080/03610910008813602

CHEN, F. L.; YEH, L. L. Economic statistical design of x-bar control charts for correlated data and Gamma failure mechanism with genetic algorithm, 40th International Conference on Computers and Industrial Engineering: Soft Computing Techniques for Advanced Manufacturing and Service Systems, CIE40, 25-28 july 2010. https://doi.org/10.1109/ICCIE.2010.5668330

CHEN, H. Joint determination of economic manufacturing quantity and control limits of x-bar control chart. 15th ISSAT International Conference on Realiability and Quality in Design, San Francisco, CA, United Stades, 2009.

CHEN, H.; KUO, W.-L. Comparisons of the symmetric and asymmetric control limits for x-bar charts. IEEM International Conference on Industrial Engineering and Engineering Menagement, 2007. https://doi.org/10.1109/IEEM.2007.4419418

CHEN, H.; KUO, W.-L. Comparisons of the Symmetric and Asymmetric control limits for x-bar and R charts. Computers & Industrial Engineering, v. 59, n. 4, p. 903–910, 2010. https://doi.org/10.1016/j.cie.2010.08.021

COSTA, A. F. B. Vssi X-bar charts with sampling at fixed times. Communications in Statistics - Theory and Methods, v. 27, n. 11, p. 2853–2869, 1998a. http://dx.doi.org/10.1080/03610929808832259

COSTA, A. F. B. Joint X -bar and R charts with variable parameters. IIE Transactions, v. 30, n. 6, p. 505–414, 1998b. DOI: 10.1023/A%3A1007555625827

COSTA, A. F. B. X-bar Charts with Variable Parameters. Journal of Quality Technology, v. 31, n. 4, 1999.

COSTA, A. F. B.; DE MAGALHÃES, M. S. Economic design of two-stage x-bar charts: The Markov chain approach. International Journal of Production Economics2, v. 95, n. 1, p. 9–20, 2005. https://doi.org/10.1016/j.ijpe.2003.10.024

DAS, T. K.; JAIN, V. An economic design model for (X)over-bar charts with random sampling policies. Iie Transactions, v. 29, n. 6, p. 507–518, 1997. http://dx.doi.org/10.1080/07408179708966357

DE MAGALHÃES, M. S.; EPPRECHT, E. K.; COSTA, A. F. B. Economic design of a Vp X bar chart. International Journal of Production Economics, v. 74, p. 191–200, 2001. https://doi.org/10.1016/S0925-5273(01)00126-8

DE MAGALHÃES, M. S.; MOURA NETO, F. D. Joint economic model for totally adaptive x-bar and R charts. European Journal of Operational Research, v. 161, n. 1, p. 148–161, 2005. https://doi.org/10.1016/j.ejor.2003.08.033

EPPRECHT, E. K.; LOUREIRO, L. D.; CHAKRABORTI, S. Effect of the amount of Phase I data on the Phase II performance of S² and S Control Charts. Journal of Quality Technology, v. 47, n.2, p. 139-155, 2015.

FERREIRA, E. B.; ELISEI JUNIOR, L.; MILITANI, M. V. B. Controle estatístico de processo no resfriamento de aves: um estudo de caso. Revista da Universidade Vale do Rio Verde, v. 9, n. 2, p. 119–128, 2011. http://dx.doi.org/10.5892/ruvrv.2011.92.119128

FLAIG, J. J. Adaptative Control Charts. In: KEATS, J. B.; MONTGOMERY, D. C. (Eds.). . Statistical process control in manufacturing. 1. ed. New York: Marcel Dekker Inc, 1991. p. 111–122.

JENSEN, W. A. et al. Effects of Parameter Estimation on Control Chart Properties ; A Literature Review. Journal of Quality Technology, v. 38, n. 4, p. 349–364, 2006.

JURAN, Joseph M.; GRYNA, Frank M.; BOU, José María Vallhonrat. Planificación y análisis de la calidad. Reverté, 1981.

KORZENOWSKI, A. L. Controle estatístico do processo aplicado a ambientes customizados. Tese de doutorado apresentada ao Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal do Rio Grande do Sul, 2012.

MARSHALL JUNIOR, I. et al. Gestão da Qualidade. 2. ed. Rio de Janeiro: Editora FGV, 2003.

MOBIN, M.; LI, Z.; KHORASKANI, M. M. Multi-Objective X-bar control chart design by integrating NSGA-II and data envelopment analysis. IIE Annual Conference and Expo 2015. Rensissance Nashville HotelNashville; United States: 2015.

MONTGOMERY, D. C. Introdução ao controle estatístico da qualidade. 4. ed. Rio de Janeiro: LTC, 2004.

MONTGOMERY, D. C.; RUNGER, G. C. Estatística aplicada e probabilidade para engenheiros. 4. ed., LTC, 2009. 463 p.

OPRIME, P. C.; GANGA, G. M. D. Análise do desempenho de gráfico de controle da variância com parâmetro estimado. XXXV Encontro Nacional de Engenharia de Produção. Anais...Fortaleza - CE: ENEGEP, 2015.

NAKANO, D. Métodos de Pesquisa Adotados na Engenharia de Produção e Gestão de Operações, In: MIGUEL, P, A, C, (org,), Metodologia de pesquisa em engenharia de produção e gestão de operações, Rio de Janeiro: Elsevier, 2010, p,63-72.

PARK, C.; CHOI, K. An economic design of control charts with VSS-Scheme. Presented at the joint Statistical Meetings of the American Statistical Association, Boston, 1992.

PARK, C.; REYNOLDS, M. R. Economic design of a variable sample size - chart. Communications in Statistics - Simulation and Computation, v. 23, n. 2, p. 467–483, 1994. http://dx.doi.org/10.1080/03610919408813182

PEÑABAENA-NIEBLES, R. et al. Methodology for the implementation of an economic and/or statistical design for x-bar charts with variable parameters (VP). Dyna, v. 81, n. 184, p. 150–157, 2014. http://dx.doi.org/10.15446/dyna.v81n184.35510

PRABHU, S. S.; MONTGOMERY, D. C.; RUNGER, G. C. A Combined Adaptive Sample Size and Sampling Interval X Control Scheme. Journal of Quality Technology, v. 26, n. 3, 1994.

REYNOLDS, M. R. et al. X-Bar Charts with Variable Sampling Intervals. Technometrics, v. 30, n. 2, p. 181–192, 1988. http://dx.doi.org/10.1080/00401706.1988.10488366

REYNOLDS, M. R.; AMIN, R. W.; ARNOLD, J. C. CUSUM Charts with Variable Sampling Intervals. Technometrics, v. 32, n. 4, p. 371–384, 1990. http://dx.doi.org/10.1080/00401706.1990.10484721

SACCUCCI, M. S.; AMIN, R. W.; LUCAS, J. M. Exponentially weighted moving average control schemes with variable sampling intervals. Communications in Statistics - Simulation and Computation, v. 21, n. 3, p. 627–657, 1992.

http://dx.doi.org/10.1080/03610919208813040

SAFAEI, A. S.; KAZEMZADEH, R. B.; GAN, H. Robust economic-statistical design of X-bar control chart. International Journal of Production Research, v. 53, n. 14, p. 4446–4458, 2015. http://dx.doi.org/10.1080/00207543.2015.1018449

SALEH, N. A.; ZWETSLOOT, I. M.; MAHMOUD, M. A.; WOODALL, W. H. CUSUM charts with controlled conditional performance under estimated parameters. Quality Engineering, v. 28, n. 4, p. 402-415, 2016. http://dx.doi.org/10.1080/08982112.2016.1144072

SCHOONHOVEN, M.; DOES, R. J. M. M. A Robust Standard Deviation Control Chart. Technometrics, v. 54, n. 1, p. 73–82, 2012. http://dx.doi.org/10.1080/00401706.2012.648869

VELJKOVIC, K.; ELFAGHIHE, H.; JEVREMOVIC, V. Economic Statistical Design of X Bar Control Chart for Non-Normal Symmetric Distribution of Quality Characteristic. Filomat, v. 29, n. 10, p. 2325–2338, 2015. http://dx.doi.org/10.2298/FIL1510325V

VRIES, A.; RENEAU, J. K. Application of statistical process control charts to monitor changes in animal production systems. Journal of Animal Scince, v. 88, n. 13, p. 11–24, 2010. http://dx.doi.org/10.2527/jas.2009-2622

WOODALL, W. H. The statistical design of quality control charts. The Statistician, v. 34, n. 2, p. 155-160, 1985. http://dx.doi.org/10.2307/2988154

YANG, Z. et al. On the Performance of Geometric Charts with Estimated Control Limits. Journal of Quality Technology, v. 34, n. 2, 2002.

Published

2017-09-15

How to Cite

Costa, N. J. da, Mozambani, C. I., Gonçalves, C. L., & Oprime, P. C. (2017). Proposed modified x-bar control chart with asymmetric limits and multiple sampling. Revista Produção Online, 17(3), 883–908. https://doi.org/10.14488/1676-1901.v17i3.2722

Issue

Section

Papers