Urban fleet cost optimization using a life cycle cost and Monte Carlo simulation hybrid model
DOI:
https://doi.org/10.14488/1676-1901.v17i2.2627Keywords:
Life Cycle Cost. Monte Carlo Simulation. Optimization. Replacement fleet. Cost Analysis.Abstract
The optimization of the annual average cost for a bus fleet had become an important issue for the managers of transport companies worldwide. Currently, there are several available tools to support managerial decision making. One of the most used techniques to analyze is the deterministic method named “Life Cycle Cost” which allows the user to assess the replacement moment. However, this method is limited because it does not consider all the possible intrinsic variations in the equipment or the possible modifications in the utilization level. This paper objective is to develop a tool to support asset’s management through the combination of the Life Cycle Cost and the Monte Carlo Simulation approaches, which forms a stochastic analytical model that considers age, annual mileage for the optimal replacement fleet. For this paper’s development, data obtained from a Brazilian company were employed. The results show that the use of this combined tool is more efficient that the deterministic model.Downloads
References
AVILA, C. R., & BECK, A. New method for efficient Monte Carlo–Neumann solution of linear. (Elsevier, Ed.) Probabilistic Engineering Mechanics,n. 40, 2015. http://dx.doi.org/10.1016/j.probengmech.2015.02.006
COSTA, A. P., NOSSA, V., TEIXEIRA, A. M., & TEIXEIRA, A. (2014). Otimização de custos do transporte público urbano: comprar ou vender um ônibus usado. Gestão, finanças e contabilidade, 2014, p. 73-92.
DARIO, M., SILVA, E. M., NETTO, M. S., & PIRES, S. R. Indicadores de desempenho, práticas e custos da manutenção na gestão de pneus de uma empresa de transportes. Revista Produção Online, v. 14, n. 4, p. 1235 – 1269, 2014. http://dx.doi.org/10.14488/1676-1901.v14i4.1450
DHILLON, B. S. Life Cycle Costing For Engineers. London - U.K.: CRC Press, 2010.
EMBLEMSVAG, J. Activity-based life-cycle costing. Managerial Auditing Journal, v. 16, n. 1, p. 17-27, 2001. http://dx.doi.org/10.1108/02686900110363447
EMBLEMSVAG, J. Life Cycle Costing: using activity-based costinf and monte-carlo to manage future costs and risks. New Jersey - USA: John Wiley, 2003.
FAN, D. W., MACHEMEHL, R., GEMAR, M., & BROWN, L. A Stochastic Dynamic Programming Approach for the Equipment Replacement Optimization under Uncertainty. Journal of transportation systems engineering and information technology, v. 14, n. 3, p. 76-84, 2014. http://dx.doi.org/10.1016/S1570-6672(13)60137-3
FELDENS, A. G., MÜLLER, C. J., FILOMENA, T. P., KLIEMANN Neto, F. J., CASTRO, A. S., & ANZANELLO, M. J. Política para avaliação e substituição de forta por meio da adoção de modelo multicritério. ABCustos - Associação Brasileira de Custos, v. 5, n. 1, p. 1-27, 2010.
FENG, W., & FIGLIOZZI, M. A. Bus fleet type and age replacement optimization: a case study utilizing king conty metro fleet data. Proceedings of the 12th conference on advanced systems for public transport, 2012.
JIN, D., KITE-POWELL, & L., H. Optimal fleet utilization and replacement. Transportation research, E 36, p. 3-20, 2000. http://dx.doi.org/10.1016/s1366-5545(99)00021-6
LAPAŠINSKAITĖ, R., & BOGUSLAUSKAS, V. The maintenance Cost Allocation in Product Life Cycle. Engineering Economics. v. 4, n. 44, p. 17-23, 2005.
LEAL, L. R., & OLIVEIRA, M. J. . Simulação aplicada ao gerenciamento de projetos: uma revisão. Revista Produção Online, v. 11, n. 2, p. 503-525, abr./jun. de 2011. http://dx.doi.org/10.14488/1676-1901.v11i2.737
MISHRA, S., SHARMA, S., KASNABIS, S., & MATHEW, T. V. Preserving an aging transit fleet: an optimal resource allocation perspective based on service liffe and constrained budget. Trasportation reserach Part, 47, p. 11-123, 2013.
PAMPLONA, E. O., & SILVA, W. F. Contribuição da simulação de Monte Carlo na projeção de cenários para gestão de custos na área de laticínios. CONGRESSO INTERNACIONAL DE CUSTOS, Anais... 2005.
RITTER, F., PANDOLFO, A., BARCELLOS, L. J., RITTER, V. R., PANDOLFO, L. M., TAGLIARI, L. D., & BARCOVI, N. E. (). Utilização do método de Monte Carlo para avaliação econômica de policultivos de jundiás. Revista Produção Online, v.14, n. 4, p. 1292-1315, out./dez de 2014. http://dx.doi.org/10.14488/1676-1901.v14i4.1590
SARAIVA JUNIOR, A. F., RODRIGUES, M. V., & COSTA, R. P. Simulação de Monte Carlo aplicada à decisão de mix de produtos. Produto e Produção, v. 11, n. 2, p. 6-54, jun. 2010.
SILVA, J. Definition if maintenance policies in power systems using a sequential Monte Carlo. Journal of Engineering, p. 122-137, 2015.
SILVEIRA, M. C., ANZANELLO, M. J., & ECTCHEVERRY, G. V. Programação de produção via seleção de variáveis e simulação de Monte Carlo. Revista Produção Online, v. 14, n. 2, p. 764-788, abr./jun. 2014. http://dx.doi.org/10.14488/1676-1901.v14i2.1603.
SINGH, D., & TIONG, R. Development of Life Cycle Costing framework for highway bridges in Myamar. International Journal of Project Management, n. 23, p. 37-44, 2005. http://dx.doi.org/10.1016/j.jproman.2004.05.010
ZAMBUJAL, J. O., & DUQUE, J. Operational asset replacement strategy: a real options approach. European Journal of Operational Research, n. 210, p. 318-325, 2011.
Published
How to Cite
Issue
Section
License
The Journal reserves the right to make spelling and grammatical changes, aiming to keep a default language, respecting, however, the style of the authors.
The published work is responsibility of the (s) author (s), while the Revista Produção Online is only responsible for the evaluation of the paper. The Revista Produção Online is not responsible for any violations of Law No. 9.610 / 1998, the Copyright Act.
The journal allows the authors to keep the copyright of accepted articles, without restrictions
This work is licensed under a Creative Commons License .