Remaining useful life model to airport assets
DOI:
https://doi.org/10.14488/1676-1901.v17i3.2404Keywords:
Asset life. Remaining useful life. Airports.Abstract
Studies highlight the importance of accurate asset life estimation in order to reduce costs and increase productivity in companies, in particular the Remaining Useful Life (RUL). However, this estimation is very sensitive to the method used and the amount of data available for analysis. Although there are several models for remaining useful life of assets, none of those were developed specifically to airports, which present problems in asset management. The main objective of this work is to develop a model to estimate the remaining life of assets in airports, in addition to its application in a Brazilian airport. It can be concluded that model was able to identify assets with a wide range of remaining useful life, relying on subjective information and few historical data. In addition, the study of the airports variables appears as a main contribution, which allows the development of models more appropriated to the specificities of the sector.Downloads
References
ABNT. ABNT NBR ISO 55000:2014 Gestão de ativos – Visão geral, princípios e terminologia. 1. ed. Rio de Janeiro: Associação Brasileira de Normas Técnicas, 2014. 23 p.
ABU-HANNA, A., LUCAS, P. Prognostic models in medicine. Methods of Information in Medicine, v. 40, n. 1, p. 1-5, 2001. http://dx.doi.org/10.3414/ME09-01-0039
AN, D., KIM, N. H., CHOI, J.-H. Practical options for selecting data-driven or physics-based prognostics algorithms with reviews. Reliability Engineering and System Safety, v. 133, p. 223-236, 2015. http://dx.doi.org/10.1016/j.ress.2014.09.014
BARUAH, P., CHINNAM, R. B. HMMs for diagnostics and prognostics in machining processes. International Journal of Production Research, v. 43, n. 6, p. 1275-1293, 2005. http://dx.doi.org/10.1080/00207540412331327727
BEUREN, M. M., RIBEIRO, J. L. D. Sistemática para substituição de ativos no setor aeroportuário: Identificação dos principais elementos que influenciam na vida útil de ativos em terminais aeroportuários. In: BEUREN, M. M. Sistemática para substituição de ativos no setor aeroportuário. Porto Alegre (RS): Dissertação de Mestrado, Programa de Pós-Graduação em Engenharia de Produção da Universidade Federal do Rio Grande do Sul, 2016.
BIAGETTI, T., SCIUBBA, E. Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems. Energy, v. 29, p. 2553-2572, 2004. http://dx.doi.org/10.1016/j.energy.2004.03.031
BRASIL. Secretaria da Receita Federal. Instrução Normativa SRF nº 162, de 31 de dezembro de 1998, alterada pela Instrução Normativa SRF nº 130, de 10 de novembro de 1999. Fixa prazo de vida útil e taxa de depreciação dos bens que relaciona. Brasília (DF): Diário Oficial da União, de 07 de janeiro de 1999, 1998.
CAMCI, F. Maintenance scheduling of geographically distributed assets with prognostics information. European Journal of Operational Research, v. 245, n. 2, p. 506-516, 2015. http://doi.org/10.1016/j.ejor.2015.03.023
CAMCI, F., CHINNAM, R. B. Health-state estimation and prognostics in machining processes. IEEE Transaction on Automation Science and Engineering, v. 7, n. 3, p. 581-597, 2010. http://doi.org/10.1109/TASE.2009.2038170
CHEN, C., VACHTSEVANOS, G., ORCHARD, M. E. Machine remaining useful life prediction: an integrated adaptive neuro-fuzzy and high-order particle filtering approach. Mechanical Systems and Signal Processing, v. 28, p. 597-607, 2012. http://dx.doi.org/10.1016%2Fj.ymssp.2011.10.009
DATLA, S. V., PANDEY, M. D. Estimation of life expectancy of wood poles in electrical distribution networks. Structural Safety, v. 28, p. 304-319, 2006. http://dx.doi.org/10.1016/j.strusafe.2005.08.006
FINKELSTEIN, M. S., ESAULOVA, V. Why the mixture failure rate decreases. Reliability Engineering and System Safety, v. 71, n. 2, p. 173-177, 2001. http://doi.org/10.1016/S0951-8320(00)00092-2
HENG, A., TAN, A. C. C., MATHEW, J., MONTGOMERY, N., BANJEVIC, D., JARDINE, A. K. S. Intelligent condition-based prediction of machinery reliability. Mechanical Systems and Signal Processing, v. 23, n. 5, p. 1600-1614, 2009a. http://dx.doi.org/10.1016/j.ymssp.2008.12.006
HENG, A., ZHANG, S., TAN, A. C. C., MATHEW, J. Rotating machinery prognostics: state of the art, challenges and opportunities. Mechanical Systems and Signal Processing, v. 23, n. 3, p. 724-739, 2009b. http://doi.org/10.1016/j.ymssp.2008.06.009
HYNDMAN, R., KOEHLER, A. Another look at measures of forecast accuracy. International Journal of Forecasting, v. 22, n. 2, p. 679-688, 2006. http://dx.doi.org/10.1016/j.ijforecast.2006.03.001
IATA. Annual Review 2014. Singapore: International Air Transport Association, 2014.
ISO. ISO 13381-1:2004 Condition Monitoring and Diagnostics of Machines – Prognostics – Part 1: General Guidelines. 1. ed. Genebra: International Standards Organization, 2004.
INFRAERO. Anuário Estatístico operacional 2013. Brasília: Diretoria de Gestão, Coordenação de Estatística e Estudos de Demanda Operacional, 2014.
JARDINE, A. K. S., LIN, D., BANJEVIC, D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, v. 20, p. 1483-1510, 2006. http://dx.doi.org/10.1016/j.ymssp.2005.09.012
KALLEN, M. J., VAN NOORTWIJK, J. M. Optimal maintenance decisions under imperfect inspection. Reliability Engineering and System Safety, v. 90, p. 177-185, 2005. http://dx.doi.org/10.1016/j.ress.2004.10.004
KARANDIKAR, J. M., KIM, N. H., SCHMITZ, T. L. Prediction of remaining useful life for fatigue-damaged structures using Bayesian inference. Engineering Fracture Mechanics, v. 96, p. 588-605, 2012. http://doi.org/10.1016/j.engfracmech.2012.09.013
KIM, K. O., KUO, W. Optimal burn-in for maximizing reliability of repairable non-series systems. European Journal of Operational Research, v. 193, p. 140-151, 2009. http://doi.org/10.1016/j.ejor.2007.10.037
LEE, B. S., CHUNG, H. S., KIM, K.-T., FORD, F. P., ANDERSEN, P. L. Remaining life prediction methods using operating data and knowledge on mechanisms. Nuclear Engineering and Design, v. 191, p. 157-165, 1999. http://doi.org/10.1016/S0029-5493(99)00138-7
LEE, J., NI, J., DJURDJANOVIC, D., QIU, H., LIAO, H. Intelligent prognostics tools and e-maintenance. Computers in Industry, v. 57, n. 6, p. 476-489, 2006. http://doi.org/10.1016/j.compind.2006.02.014
MAJIDIAN, A., SAIDI, M. H. Comparison of fuzzy logic and neural network in life prediction of boiler tubes. International Journal of Fatigue, v. 29, n. 3, p. 489-498, 2007. http://doi.org/10.1016/j.ijfatigue.2006.05.001
MCKINSEY. Estudo do setor de transporte aéreo no Brasil: relatório consolidado. 1. ed. Rio de Janeiro: McKinsey e Company, 2010.
MOURA NETO, A. Eficiência técnica: uma avaliação de aeroportos brasileiros. Journal of Transport Literature, v. 7, n. 4, p. 147-174, 2013. http://dx.doi.org/10.1590/S2238-10312013000400008
ØIEN, K. Improved quality of input data for maintenance using expert judgment. Reliability Engineering and System Safety, v. 60, p. 93-101, 1998. http://doi.org/10.1016/S0951-8320(98)83002-0
PENG, Y., DONG, M. A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction. Mechanical Systems and Signal Processing, v. 25, p. 237-252, 2011. http://dx.doi.org/10.1016/j.ymssp.2010.04.002
RIBEIRO, J. L. D., TINOCO, M. A. C., MIORANDO, R. F. Laudo de avaliação da vida residual dos ativos do grupo empresarial. [S.l:s.n.], 2010.
SAHA, B., GOEBEL, K., CHRISTOPHERSEN, J. Comparison of prognostic algorithms for estimating remaining useful life of batteries. Transactions of the Institute of Measurement and Control, v. 31, n. 3-4, p. 293-308, 2009. http://doi.org/10.1177/0142331208092030
SANKARARAMAN, S. Significance, interpretation, and quantification of uncertainty in prognostics and remaining useful life prediction. Mechanical Systems and Signal Processing, v. 52-53, p. 228-247, 2015. http://doi.org/10.1016/j.ymssp.2014.05.029
SCARF, P. A. On the application of mathematical models in maintenance. European Journal of Operational Research, v. 99, n. 3, p. 493-506, 1997. http://dx.doi.org/10.1016/S0377-2217(96)00316-5
SI, X.-S., WANG, W., HU, C.-H., ZHOU, D.-H. Remaining useful life estimation: a review on the statistical data driven approaches. European Journal of Operational Research, v. 213, p. 1-14, 2011. http://dx.doi.org/10.1016/j.ejor.2010.11.018
SIKORSKA, J. Z., HODKIEWICZ, M., MA, L. Prognostic modelling options for remaining useful life estimation by industry. Mechanical Systems and Signal Processing, v. 25, p. 1803-1836, 2011. http://doi.org/10.1016/j.ymssp.2010.11.018
SON, K. L., FOULADIRAD, M., BARROS, A., LEVRAT, E., IUNG, B. Remaining useful life estimation based on stochastic deterioration models: a comparative study. Reliability Engineering and System Safety, v. 112, p. 165-175, 2013. http://dx.doi.org/10.1016%2Fj.ress.2012.11.022
WANG, W., ZHANG, W. An asset residual life prediction model based on expert judgments. European Journal of Operation Research, v. 188, p. 496-505, 2008. http://doi.org/10.1016/j.ejor.2007.03.044
WANG, L., CHU, J., MAO, W. A condition-based replacement and spare provisioning policy for deteriorating systems with uncertain deterioration to failure. European Journal of Operation Research, v. 194, p. 184-205, 2009. http://dx.doi.org/10.1016/j.ejor.2007.12.012
WANG, X., RABIEI, M., HURTADO, J., MODARRES, M., HOFFMAN, P. A probabilistic-based airframe integrity management model. Reliability Engineering and System Safety, v. 94, n. 5, p. 932-941, 2009. http://doi.org/10.1016/j.ress.2008.10.010
WANKE, P. F. Physical infrastructure and flight consolidation efficiency drivers in Brazilian airports: A two-stage network-DEA approach. Journal of Air Transport Management, v. 31, p. 1-5, 2013. http://doi.org/10.1016/j.jairtraman.2012.09.001
YAN, J., KOC, M., LEE, J. A prognostic algorithm for machine performance assessment and its application. Production Planning and Control, v. 76, p. 796-801, 2004. http://dx.doi.org/10.1080/09537280412331309208
ZHANG, J., LEE, J. A review on prognostics and health monitoring of Li-ion battery. Journal of Power Sources, v. 196, p. 6007-6014, 2011. http://doi.org/10.1016/j.jpowsour.2011.03.101
ZHOU, Y., SUN, Y., MATHEW, J., WOLFF, R., MA, L. Latent degradation indicators estimation and prediction: A Monte Carlo approach. Mechanical Systems and Signal Processing, v. 25, p. 222-236, 2011. http://doi.org/10.1016%2Fj.ymssp.2010.08.012
Published
How to Cite
Issue
Section
License
The Journal reserves the right to make spelling and grammatical changes, aiming to keep a default language, respecting, however, the style of the authors.
The published work is responsibility of the (s) author (s), while the Revista Produção Online is only responsible for the evaluation of the paper. The Revista Produção Online is not responsible for any violations of Law No. 9.610 / 1998, the Copyright Act.
The journal allows the authors to keep the copyright of accepted articles, without restrictions
This work is licensed under a Creative Commons License .