Heuristic methods using variable neighborhood random local search for the clustered traveling salesman problem
DOI:
https://doi.org/10.14488/1676-1901.v14i4.1721Keywords:
Operations Research. Combinatorial Optimization. Heuristic Methods. Variable Neighborhood Randomized Descent. Iterated Local Search.Abstract
In this paper, we propose new heuristic methods for solver the Clustered Traveling Salesman Problem (CTSP). The CTSP is a generalization of the Traveling Salesman Problem (TSP) in which the set of vertices is partitioned into disjoint clusters and objective is to find a minimum cost Hamiltonian cycle such that the vertices of each cluster are visited contiguously. We develop two Variable Neighborhood Random Descent with Iterated Local for solver the CTSP. The heuristic methods proposed were tested in types of instances with data at different level of granularity for the number of vertices and clusters. The computational results showed that the heuristic methods outperform recent existing methods in the literature and they are competitive with an exact algorithm using the Parallel CPLEX software.Downloads
Published
How to Cite
Issue
Section
License
The Journal reserves the right to make spelling and grammatical changes, aiming to keep a default language, respecting, however, the style of the authors.
The published work is responsibility of the (s) author (s), while the Revista Produção Online is only responsible for the evaluation of the paper. The Revista Produção Online is not responsible for any violations of Law No. 9.610 / 1998, the Copyright Act.
The journal allows the authors to keep the copyright of accepted articles, without restrictions
This work is licensed under a Creative Commons License .