Métodos para identificação de plantas daninhas em lavouras de milho com uso de inteligência artificial e processamento de imagens

revisão de literatura

Autores

DOI:

https://doi.org/10.14488/1676-1901.v24i2.5249

Palavras-chave:

Redes neurais convolucionais, Agricultura inteligente, Processamento de imagens, Controle inteligente de ervas daninhas, Cultura de milho

Resumo

As pesquisas baseadas em Inteligência Artificial e Processamento de Imagens com foco em soluções de controle e gerenciamento de pragas na agricultura vêm evoluindo progressivamente ao decorrer dos anos. Identificar e controlar infestações em lavouras é fundamental para o efetivo incremento de produtividade, o que reflete na cadeia de suprimentos da sociedade e na gestão de segurança alimentar. Assim, o objetivo, nesta fase da pesquisa, foi elaborar uma revisão sistemática da literatura, a partir de termos de busca, para identificar métodos e técnicas que vêm sendo utilizadas na identificação de plantas daninhas em lavouras de milho, com a utilização de redes neurais convolucionais. A análise das pesquisas relacionadas ao tema foi realizada de forma quantitativa e qualitativa. Foram selecionados nove trabalhos para um estudo aprofundado, buscando identificar fatores impactantes nos resultados. Também, elaborou-se um comparativo dos trabalhos selecionados com análises e gráficos de correlações entre palavras-chave e autores. Como resultado, os trabalhos encontrados demonstraram bons desempenhos em seus objetivos. Foram destacadas a preocupação em relação à qualidade da base de dados utilizada, bem como a calibração do modelo de rede neural convolucional, conforme especificidade de cada trabalho. Observou-se um avanço significativo na aplicação desses modelos para processamento de imagens em tempo real, permitindo uma resposta ágil e precisa no controle de pragas agrícolas.

Downloads

Não há dados estatísticos.

Biografia do Autor

Rodrigo Nunes Wessner, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS, Brasil.

Mestrando em Sistemas e Processos Industriais e graduado em Ciência da Computação pela Universidade de Santa Cruz do Sul. Desenvolvedor de software com atuação em sistemas bancários e agricultor. Pesquisa temas relacionados à Inteligência Artificial (Redes Neurais Artificiais, Aprendizado de Máquina).

Rejane Frozza, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS, Brasil.

Doutora em Computação pela Universidade Federal do Rio Grande do Sul (UFRGS-RS), com estágio doutoral sanduíche na Université Joseph Fourier (Grenoble-France). Professora adjunta da Universidade de Santa Cruz do Sul (UNISC-RS), no Departamento de Engenharias, Arquitetura e Computação, no Programa de Pós-Graduação em Sistemas e Processos Industriais - Mestrado e no Programa de Pós-Graduação em Letras - Mestrado e Doutorado. Pesquisa temas relacionados à Inteligência Artificial (Agentes Conversacionais, Agentes Pedagógicos em Sistemas Virtuais de Aprendizagem, Gestão do Conhecimento, Sistemas Multiagentes, Redes Neurais Artificiais, Sistemas Difusos, Sistemas de Raciocínio Baseado em Casos, Aprendizado de Máquina).

Rolf Fredi Molz, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, RS, Brasil.

Doutor em Computação pela Universidade Federal do Rio Grande do Sul (UFRGS-RS). Professor titular da Universidade de Santa Cruz do Sul (UNISC-RS) e Pró-Reitor Acadêmico da mesma IES. Avaliador de cursos e instituições de Ensino Superior junto ao Instituto Nacional de Estudos e Pesquisas Educacionais (INEP) - Ministério da Educação; avaliador para acreditação de cursos de Engenharia para o Mercosul, sócio e engenheiro responsável na empresa Imply Tecnologia Eletrônica Ltda. Pesquisa temas relacionados à Arquitetura de Sistemas de Computação (Processamento de Imagens, Redes Neurais).

Referências

CHEN, J.; ZHANG, D.; SUZAUDDOLA, M.; ZEB, A. Identifying crop diseases using attention embedded MobileNet-V2 model. Applied Soft Computing, v. 113, p. 107901, 2021. Disponível em: https://doi.org/10.1016/j.asoc.2021.107901.

COULIBALY, S.; KAMSU-FOGUEM, B.; KAMISSOKO, D.; TRAORE, D. Deep learning for precision agriculture: A bibliometric analysis. Intelligent Systems with Applications, v. 16, p. 200102, 2022. Disponível em: https://doi.org/10.1016/j.iswa.2022.200102.

DIVYANTH, L. G.; AHMAD, A.; SARASWAT, D. A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery. Smart Agricultural Technology, v. 3, p. 100108, 2023. Disponível em: https://doi.org/10.1016/j.atech.2022.100108.

FAN, X.; CHAI, X.; ZHOU, J.; SUN, T. Deep learning based weed detection and target spraying robot system at seedling stage of cotton field. Computers and Electronics in Agriculture, v. 214, p. 108317, 2023. Disponível em: https://doi.org/10.1016/j.compag.2023.108317.

FERREIRA, A. S.; FREITAS, D. M.; DA SILVA, G. G.; PISTORI, H.; FOLHES, M. T. Weed detection in soybean crops using ConvNets. Computers and Electronics in Agriculture, v. 143, p. 314-324, 2017. Disponível em: https://doi.org/10.1016/j.compag.2017.10.027.

GARIBALDI-MÁRQUEZ, F.; FLORES, G.; MERCADO-RAVELL, D. A.; RAMÍREZ-PEDRAZA, A.; VALENTÍN-CORONADO, L. M. Weed Classification from Natural Corn Field-Multi-Plant Images Based on Shallow and Deep Learning. Sensors, v. 22, n. 3021, 2022. Disponível em: https://doi.org/10.3390/s22083021.

HAICHEN, J.; QINGRUI, C.; GUANG, L. Z. Weeds and Crops Classification Using Deep Convolutional Neural Network. In: Proceedings of the 3rd International Conference on Control and Computer Vision (ICCCV '20). New York, NY, USA: Association for Computing Machinery, 2021. p. 40–44. Disponível em: https://doi.org/10.1145/3425577.3425585.

HAQ, M. A. CNN Based Automated Weed Detection System Using UAV Imagery. Computer Systems Science & Engineering, v. 42, n. 2, 2021. Disponível em: https://doi.org/10.32604/csse.2022.023016.

HAYKIN, S. Neural Networks and Learning Machines. 3 ed. Pearson Education, 2009.

KLOMPENBURGA, T. V.; KASSAHUNA, A.; CATAL, C. Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 2020. Disponível em: https://doi.org/10.1016/j.compag.2020.105709.

CHEN, J.; ZHANG, D.; SUZAUDDOLA, M.; ZEB, A. Identifying crop diseases using attention embedded MobileNet-V2 model. Applied Soft Computing, v. 113, p. 107901, 2021. Disponível em: https://doi.org/10.1016/j.asoc.2021.107901.

COULIBALY, S.; KAMSU-FOGUEM, B.; KAMISSOKO, D.; TRAORE, D. Deep learning for precision agriculture: A bibliometric analysis. Intelligent Systems with Applications, v. 16, p. 200102, 2022. Disponível em: https://doi.org/10.1016/j.iswa.2022.200102.

DIVYANTH, L. G.; AHMAD, A.; SARASWAT, D. A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery. Smart Agricultural Technology, v. 3, p. 100108, 2023. Disponível em: https://doi.org/10.1016/j.atech.2022.100108.

FAN, X.; CHAI, X.; ZHOU, J.; SUN, T. Deep learning based weed detection and target spraying robot system at seedling stage of cotton field. Computers and Electronics in Agriculture, v. 214, p. 108317, 2023. Disponível em: https://doi.org/10.1016/j.compag.2023.108317.

FERREIRA, A. S.; FREITAS, D. M.; DA SILVA, G. G.; PISTORI, H.; FOLHES, M. T. Weed detection in soybean crops using ConvNets. Computers and Electronics in Agriculture, v. 143, p. 314-324, 2017. Disponível em: https://doi.org/10.1016/j.compag.2017.10.027.

GARIBALDI-MÁRQUEZ, F.; FLORES, G.; MERCADO-RAVELL, D. A.; RAMÍREZ-PEDRAZA, A.; VALENTÍN-CORONADO, L. M. Weed Classification from Natural Corn Field-Multi-Plant Images Based on Shallow and Deep Learning. Sensors, v. 22, n. 3021, 2022. Disponível em: https://doi.org/10.3390/s22083021.

HAICHEN, J.; QINGRUI, C.; GUANG, L. Z. Weeds and Crops Classification Using Deep Convolutional Neural Network. In: Proceedings of the 3rd International Conference on Control and Computer Vision (ICCCV '20). New York, NY, USA: Association for Computing Machinery, 2021. p. 40–44. Disponível em: https://doi.org/10.1145/3425577.3425585.

HAQ, M. A. CNN Based Automated Weed Detection System Using UAV Imagery. Computer Systems Science & Engineering, v. 42, n. 2, 2021. Disponível em: https://doi.org/10.32604/csse.2022.023016.

HAYKIN, S. Neural Networks and Learning Machines. 3 ed. Pearson Education, 2009.

KLOMPENBURGA, T. V.; KASSAHUNA, A.; CATAL, C. Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 2020. Disponível em: https://doi.org/10.1016/j.compag.2020.105709.

LIBERATI, A.; ALTMAN, D. G.; TETZLAFF, J.; MULROW, C.; GØTZSCHE, P. C.; IOANNIDIS, J. P.; CLARKE, M.; DEVEREAUX, P. J.; KLEIJNEN, J.; MOHER, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med., v. 6, n. 7, p. e1000100, 2009. DOI: https://doi.org/10.1371/journal.pmed.1000100.

LU, Y.; YOUNG, S. A survey of public datasets for computer vision tasks in precision agriculture. Computers and Electronics in Agriculture, v. 178, p. 105760, 2020. Disponível em: https://doi.org/10.1016/j.compag.2020.105760.

PANDEY, A.; JAIN, K. An intelligent system for crop identification and classification from UAV images using conjugated dense convolutional neural network. Computers and Electronics in Agriculture, v. 192, p. 106543, 2022. Disponível em: https://doi.org/10.1016/j.compag.2021.106543.

PETERSEN, K.; FELDT, R.; MUJTABA, S.; MATTSSON, M. Systematic mapping studies in software engineering. In: Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering (EASE'08). Swindon, GBR: BCS Learning & Development Ltd., 2008. p. 68–77.

PICON, A.; SAN-EMETERIO, M. G.; BERECIARTUA-PEREZ, A.; KLUKAS, C.; EGGERS, T.; NAVARRA-MESTRE, R. Deep learning-based segmentation of multiple species of weeds and corn crop using synthetic and real image datasets. Computers and Electronics in Agriculture, v. 194, p. 106719, 2022. Disponível em: https://doi.org/10.1016/j.compag.2022.106719.

SANTOS, E. S.; SANTOS, J. D.; VOGADO, L. H. S.; SOUSA, L. P.; SOARES, H. A.; VERAS, R. M. S. Explicando as decisões com IAs: Demonstrando sua aplicação em imagens médicas. In: XXIII SIMPÓSIO BRASILEIRO DE COMPUTAÇÃO APLICADA À SAÚDE - SBCAS 2023.

SCODRO, L.; CORSO, L. L. Previsão de preço de alimentos utilizando o método ARIMA e Inteligência Artificial. Revista Produção Online, v. 23, n. 1, e-4869, 2023. Florianópolis.

SCHÜLER, S.; KIPPER, L. M.; MORAES, J. A. R.; ITURBITE, J. M. P.; LOBO, E. A. Inovação e sustentabilidade na agricultura do continente africano: uma revisão bibliométrica. Revista Produção Online, v. 23, n. 2, e-4910, 2023. Florianópolis.

SHAFI, U.; MUMTAZ, R.; GARCÍA-NIETO, J.; HASSAN, S. A.; ZAIDI, S. A. R.; IQBAL, N. Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors, v. 19, n. 3796, 2019. Disponível em: https://doi.org/10.3390/s19173796

SISHODIA, R. P.; RAY, R. L.; SINGH, S. K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens., v. 12, p. 3136, 2020. Disponível em: https://doi.org/10.3390/rs12193136.

SOUZA, V.; ARAÚJO, L.; SILVA, L.; SANTOS, A. Análise comparativa de redes neurais convolucionais no reconhecimento de cenas. In: XI COMPUTER ON THE BEACH, Balneário Camburiú, SC, 2020. Disponível em: https://doi.org/10.14210/cotb.v11n1.p419-426.

SUBEESH, A.; BHOLE, S.; SINGH, K.; CHANDEL, N. S.; RAJWADE, Y. A.; RAO, K. V. R.; KUMAR, S. P.; JAT, D. Deep convolutional neural network models for weed detection in polyhouse grown bell peppers. Artificial Intelligence in Agriculture, v. 6, p. 47-54, 2022. ISSN 2589-7217. Disponível em: https://doi.org/10.1016/j.aiia.2022.01.002.

SUH, S.; JHANG, J.; WON, K.; SHIN, S.; SUNG, C. O. Development of vegetation mapping with deep convolutional neural network. In: PROCEEDINGS OF THE 2018 CONFERENCE ON RESEARCH IN ADAPTIVE AND CONVERGENT SYSTEMS (RACS '18). New York, NY, USA: Association for Computing Machinery, 2018. p. 53–58. Disponível em: https://doi.org/10.1145/3264746.3264753

SUNIL G. C.; ZHANG, Y.; KOPARAN, C.; AHMED, M. R.; HOWATT, K.; SUN, X. Weed and crop species classification using computer vision and deep learning technologies in greenhouse conditions. Journal of Agriculture and Food Research, v. 9, 100325, 2022. ISSN 2666-1543. Disponível em: https://doi.org/10.1016/j.jafr.2022.100325.

VEERAGANDHAM, S.; SANTHI, H. Effectiveness of convolutional layers in pre-trained models for classifying common weeds in groundnut and corn crops. Computers and Electrical Engineering, v. 103, 108315, 2022. Disponível em: https://doi.org/10.1016/j.compeleceng.2022.108315.

WESSNER, R. N.; FROZZA, R.; BAGATINI, D. D. S.; MOLZ, R. F. Recognition of weeds in corn crops: System with convolutional neural networks. Journal of Agriculture and Food Research, v. 14, 100669, 2023. Disponível em: https://doi.org/10.1016/j.jafr.2023.100669.

Publicado

17-06-2024

Como Citar

Wessner, R. N., Frozza, R., & Molz, R. F. (2024). Métodos para identificação de plantas daninhas em lavouras de milho com uso de inteligência artificial e processamento de imagens: revisão de literatura. Revista Produção Online, 24(2), 5249 . https://doi.org/10.14488/1676-1901.v24i2.5249

Edição

Seção

Artigos