Análise bibliométrica e de conteúdo de publicações que utilizaram software logístico para apoio à decisão
DOI:
https://doi.org/10.14488/1676-1901.v22i4.4793Palavras-chave:
AnyLogistix®, Cadeia de suprimentos, Logística, Bibliometria, Análise de conteúdoResumo
A presente pesquisa apresenta uma análise bibliométrica e de conteúdo acerca do campo de estudo relacionado à logística e a utilização do software anyLogistix®. O objetivo dessa análise é realizar a verificação das seguintes questões, relacionadas às publicações nesse âmbito: (i) A evolução temporal das publicações; (ii) A distribuição das publicações por autor ao longo dos anos; (iii) Distribuição das publicações da amostra por país de origem; (iv) A distribuição das publicações por veículo de publicação. Além disso, pretende-se com essa pesquisa identificar e analisar as principais tendências desse campo de estudo, ressaltando os temas de maior destaque dentro da bibliometria. A bibliometria abrange artigos de todos os períodos de publicação encontrados na base de pesquisa considerada, até meados de 2022. Por meio da análise bibliométrica, o estudo oferece vários insights sobre as publicações relacionadas ao software anyLogistix®. O estudo também apresenta como resultado as temáticas mais abordadas em conjunto com a aplicação do software. Além disso, observa-se com a pesquisa que esse tema ainda é incipiente em publicações, e apesar de em 2020 o número de pesquisas publicadas terem aumentado consideravelmente, a partir de 2021 esse número decaiu novamente.
Downloads
Referências
ALDRIGHETTI, Riccardo; ZENNARO, Ilenia; FINCO, Serena; BATTINI, Daria. Healthcare Supply Chain Simulation with Disruption Considerations: a case study from northern italy. Global Journal Of Flexible Systems Management, v. 20, n. 1, p. 81-102, 30 nov. 2019. Disponível em: https://link.springer.com/article/10.1007/s40171-019-00223-8. Acesso em: 01 out. 2022.
BARYKIN, Sergey Yevgenievich; KAPUSTINA, Irina Vasilievna; SERGEEV, Sergey Mikhailovich; YADYKIN, Vladimir Konstantinovich. Algorithmic Foundations of Economic and Mathematical Modeling of Network Logistics Processes. Journal Of Open Innovation: Technology, Market, and Complexity, v. 6, n. 4, p. 189, 2020. Disponível em: https://www.researchgate.net/publication/347618893. Acesso em: 30 set. 2022.
BARYKIN, Sergey Yevgenievich; BOCHKAREV, Andrey Aleksandrovich; KALININA, Olga Vladimirovna; YADYKIN, Vladimir Konstantinovich. Concept for a Supply Chain Digital Twin. International Journal Of Mathematical, Engineering And Management Sciences, v. 5, n. 6, p. 1498-1515, 2020b. Disponível em: https://www.researchgate.net/publication/346892385. Acesso em: 03 ago. 2022.
BROADUS, R. N. Toward a definition of “bibliometrics”. Scientometrics, v. 12, n. 5-6, p. 373-379, 1987. Disponível em: https://akjournals.com/view/journals/11192/12/5-6/article-p373.xml. Acesso em: 23 jun. 2022.
BURGOS, Diana; IVANOV, Dmitry. Food retail supply chain resilience and the COVID-19 pandemic: a digital twin-based impact analysis and improvement directions. Transportation Research Part e: Logistics and Transportation Review, v. 152, p. 102412, ago. 2021. Disponível em: https://www.researchgate.net/publication/352873521_Food_Retail_Supply_Chain_Resilience_and_the_COVID-19_Pandemic_A_Digital_Twin-Based_Impact_Analysis_and_Improvement_Directions. Acesso em: 30 jul. 2022.
CHEN, Jie; SOHAL, Amrik S.; PRAJOGO, Daniel I. Supply chain operational risk mitigation: a collaborative approach. International Journal Of Production Research, v. 51, n. 7, p. 2186-2199, abr. 2013. Disponível em: https://doi.org/10.1080/00207543.2012.727490. Acesso em: 03 ago. 2022.
DING, Can; LIU, Li; ZHENG, Yi; LIAO, Jianxiu; HUANG, Wenxing. Role of Distribution Centers Disruptions in New Retail Supply Chain: an analysis experiment. Sustainability, v. 14, n. 11, p. 6529, 2022. Disponível em: https://www.mdpi.com/2071-1050/14/11/6529. Acesso em: 30 jul. 2022.
DING, Qing; ABBA, Oumate Alhadji; JAHANSHAHI, Hadi; ALASSAFI, Madini O.; HUANG, Wen-Hua. Dynamical Investigation, Electronic Circuit Realization and Emulation of a Fractional-Order Chaotic Three-Echelon Supply Chain System. Mathematics, v. 10, n. 4, p. 625, 17 fev. 2022. Disponível em: https://www.mdpi.com/2227-7390/10/4/625. Acesso em: 30 set. 2022.
DOLGUI, Alexandre; IVANOV, Dmitry; SOKOLOV, Boris. Ripple effect in the supply chain: an analysis and recent literature. International Journal Of Production Research, v. 56, n. 1-2, p. 414-430, 2018. Disponível em: https://www.tandfonline.com/doi/full/10.1080/00207543.2017.1387680. Acesso em: 30 jul. 2022.
DONTHU, Naveen; KUMAR, Satish; MUKHERJEE, Debmalya; PANDEY, Nitesh; LIM, Weng Marc. How to conduct a bibliometric analysis: an overview and guidelines. Journal Of Business Research, v. 133, p. 285-296, set. 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S0148296321003155. Acesso em: 23 jun. 2022.
ELLEGAARD, Ole; WALLIN, Johan A. The bibliometric analysis of scholarly production: how great is the impact?. Scientometrics, v. 105, n. 3, p. 1809-1831, 2015. Disponível em: https://link.springer.com/article/10.1007/s11192-015-1645-z. Acesso em: 23 jun. 2022.
GAUR, Ajai; KUMAR, Mukesh. A systematic approach to conducting review studies: an assessment of content analysis in 25 years of ib research. Journal Of World Business, v. 53, n. 2, p. 280-289, 2018. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1090951617308386?via%3Dihub. Acesso em: 23 jun. 2022.
GAWANKAR, Shradha A.; GUNASEKARAN, Angappa; KAMBLE, Sachin. A study on investments in the big data-driven supply chain, performance measures and organisational performance in Indian retail 4.0 context. International Journal Of Production Research, v. 58, n. 5, p. 1574-1593, 2019. Disponível em: https://www.tandfonline.com/doi/full/10.1080/00207543.2019.1668070. Acesso em: 06 ago. 2022.
GIANESELLO, Pietro; IVANOV, Dmitry; BATTINI, Daria. Closed-loop supply chain simulation with disruption considerations: a case-study on tesla. International Journal Of Inventory Research, v. 4, n. 4, p. 257, 2017. Disponível em: https://www.researchgate.net/publication/323761995_Closed-loop_supply_chain_simulation_with_disruption_considerations_a_case-study_on_Tesla. Acesso em: 30 jul. 2022.
GONZÁLEZ-HERNÁNDEZ, Isidro Jesús; MARTÍNEZ-FLORES, José Luis; SÁNCHEZ-PARTIDA, Diana; GIBAJA-ROMERO, Damián Emilio. Relocation of the distribution center of a motor oil producer reducing its storage capacity: a case study. Simulation, v. 95, n. 11, p. 1097-1112, 2019. Disponível em: https://journals.sagepub.com/doi/10.1177/0037549718825299. Acesso em: 02 out. 2022.
HALLDORSSON, Arni; KOTZAB, Herbert; MIKKOLA, Juliana H.; SKJØTT‐LARSEN, Tage. Complementary theories to supply chain management. Supply Chain Management: An International Journal, v. 12, n. 4, p. 284-296, 2007. Disponível em: https://www.emerald.com/insight/content/doi/10.1108/13598540710759808/full/html. Acesso em: 30 set. 2022.
HEIJ, J.C.J. de. The use of data models for assessing standard logistics software. Computers In Industry, v. 25, n. 2, p. 211-216, dez. 1994. Disponível em: https://wwwsciencedirect.ez359.periodicos.capes.gov.br/science/article/pii/0166361594900493. Acesso em: 08 ago. 2022.
HERMOGENES, Lucas Ramon dos Santos; GOMES, Carlos Francisco Simões; SANTOS, Marcos dos; MEDINA, Afonso. Análise da cadeia de suprimentos de um e-commerce utilizando a ferramenta computacional AnyLogistix®. Revista Simep, João Pessoa, v. 2, n. 1, p. 34-50, jun. 2022. Disponível em: https://revista.simep.com.br/index.php/simep/article/view/40/23. Acesso em: 15 jul. 2022.
HOSSEINI, Seyedmohsen; IVANOV, Dmitry; DOLGUI, Alexandre. Ripple effect modelling of supplier disruption: integrated markov chain and dynamic bayesian network approach. International Journal Of Production Research, v. 58, n. 11, p. 3284-3303, jun. 2020. Disponível em: https://www.researchgate.net/publication/335717358_Ripple_effect_modelling_of_supplier_disruption_integrated_Markov_chain_and_dynamic_Bayesian_network_approach. Acesso em: 30 jul. 2022.
HOSSEINI, Seyedmohsen; IVANOV, Dmitry. A multi-layer Bayesian network method for supply chain disruption modelling in the wake of the COVID-19 pandemic. International Journal Of Production Research, p. 1-19, 2021. Disponível em: https://www.researchgate.net/publication/354185521. Acesso em: 30 jul. 2022.
HUANG, Yakun; LI, Jack; QI, Yuan; SHI, Victor. Predicting the Impacts of the COVID-19 Pandemic on Food Supply Chains and Their Sustainability: a simulation study. Discrete Dynamics In Nature And Society, v. 2021, p. 1-9, 2021. Disponível em: https://www.hindawi.com/journals/ddns/2021/7109432/. Acesso em: 15 ago. 2022.
IVANOV, Dmitry; SOKOLOV, Boris; SOLOVYEVA, Inna; DOLGUI, Alexandre; JIE, Ferry. Dynamic recovery policies for time-critical supply chains under conditions of ripple effect. International Journal Of Production Research, v. 54, n. 23, p. 7245-7258, 13 mar. 2016. Disponível em: https://www.researchgate.net/publication/298336933. Acesso em: 30 jul. 2022.
IVANOV, Dmitry. Simulation-based ripple effect modelling in the supply chain. International Journal Of Production Research, v. 55, n. 7, p. 2083-2101, 2017. Disponível em: https://www.tandfonline.com/doi/full/10.1080/00207543.2016.1275873. Acesso em: 30 jul. 2022.
IVANOV, Dmitry. Disruption tails and revival policies: a simulation analysis of supply chain design and production-ordering systems in the recovery and post-disruption periods. Computers & Industrial Engineering, v. 127, p. 558-570, jan. 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0360835218305230?via%3Dihub. Acesso em: 30 jul. 2022.
IVANOV, Dmitry; DOLGUI, Alexandre; SOKOLOV, Boris. The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal Of Production Research, v. 57, n. 3, p. 829-846, 2019. Disponível em: https://www.researchgate.net/publication/326046999. Acesso em: 29 jul. 2022.
IVANOV, Dmitry. ‘A blessing in disguise’ or ‘as if it wasn’t hard enough already’: reciprocal and aggravate vulnerabilities in the supply chain. International Journal Of Production Research, v. 58, n. 11, p. 3252-3262, 2020a. Disponível em: https://www.tandfonline.com/doi/full/10.1080/00207543.2019.1634850. Acesso em: 30 jul. 2022.
IVANOV, Dmitry. Predicting the impacts of epidemic outbreaks on global supply chains: a simulation-based analysis on the coronavirus outbreak (covid-19/sars-cov-2) case. Transportation Research Part e: Logistics and Transportation Review, v. 136, p. 101922, 2020b. Disponível em: https://www.sciencedirect.com/science/article/pii/S1366554520304300?via%3Dihub. Acesso em: 30 jul. 2022.
IVANOV, Dmitry. Supply Chain Viability and the COVID-19 pandemic: a conceptual and formal generalisation of four major adaptation strategies. International Journal Of Production Research, v. 59, n. 12, p. 3535-3552, 9 mar. 2021. Disponível em: https://www.researchgate.net/publication/349925210. Acesso em: 30 jul. 2022.
IVANOV, Dmitry; DOLGUI, Alexandre. A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, v. 32, n. 9, p. 775-788, 21 maio 2021. Disponível em: https://www.tandfonline.com/doi/full/10.1080/09537287.2020.1768450. Acesso em: 29 jul. 2022.
IVANOV, Dmitry. Blackout and supply chains: cross-structural ripple effect, performance, resilience and viability impact analysis. Annals Of Operations Research, 3 jun. 2022. Disponível em: https://link.springer.com/article/10.1007/s10479-022-04754-9. Acesso em: 30 jul. 2022.
KAUR, Gurvinder; PASRICHA, Sudhir; KATHURIA, Girish. Resilience Role of Distribution Centers amid COVID-19 Crisis in Tier-A Cities of India: a green field analysis experiment. Journal Of Operations And Strategic Planning, v. 3, n. 2, p. 226-239, dez. 2020. Disponível em: https://journals.sagepub.com/doi/pdf/10.1177/2516600X20970352. Acesso em: 20 ago. 2022.
KHAN, Ashraf; HASSAN, M. Kabir; PALTRINIERI, Andrea; DREASSI, Alberto; BAHOO, Salman. A bibliometric review of takaful literature. International Review Of Economics & Financev. 69, p. 389-405, set. 2020. Disponível em: https://www-sciencedirect.ez359.periodicos.capes.gov.br/science/article/pii/S1059056020301040. Acesso em: 23 jun. 2022.
KINRA, Aseem; IVANOV, Dmitry; DAS, Ajay; DOLGUI, Alexandre. Ripple effect quantification by supplier risk exposure assessment. International Journal Of Production Research, v. 58, n. 18, p. 5559-5578, 11 out. 2020. Disponível em: https://www.tandfonline.com/doi/full/10.1080/00207543.2019.1675919. Acesso em: 29 jul. 2022.
LANG, Sebastian; REGGELIN, Tobias; MÜLLER, Marcel; NAHHAS, Abdulrahman. Open-source discrete-event simulation software for applications in production and logistics: an alternative to commercial tools?. Procedia Computer Science, v. 180, p. 978-987, 2021. Disponível em: https://www-sciencedirect.ez359.periodicos.capes.gov.br/science/article/pii/S1877050921004038. Acesso em: 06 ago. 2022.
LLAGUNO, Arrate; MULA, Josefa; CAMPUZANO-BOLARIN, Francisco. State of the art, conceptual framework and simulation analysis of the ripple effect on supply chains. International Journal Of Production Research, v. 60, n. 6, p. 2044-2066, 8 fev. 2022. Disponível em: https://www.tandfonline.com/doi/full/10.1080/00207543.2021.1877842. Acesso em: 30 jul. 2022.
LOZANO-DIEZ, Jose; MARMOLEJO-SAUCEDO, Jose; RODRIGUEZ-AGUILAR, Roman. Designing a resilient supply chain: an approach to reduce drug shortages in epidemic outbreaks. Eai Endorsed Transactions On Pervasive Health And Technology, v. 6, n. 21, p. 164260, 11 maio 2020. Disponível em: https://www.researchgate.net/publication/341207365. Acesso em: 29 jul. 2022.
MACHLINE, Claude. Cinco décadas de logística empresarial e administração da cadeia de suprimentos no Brasil. Revista de Administração de Empresas, v. 51, n. 3, p. 227-231, jun. 2011. Disponível em: https://www.scielo.br/j/rae/a/wgnpzqtKsNSnQyCycRKh65L/?lang=pt. Acesso em: 01 out. 2022.
MARMOLEJO-SAUCEDO, J.A.; NIEMBRO-GARCÍA, J.; ALVA-GUERRA, Lf. Structural dynamics of logistic networks: a sustainable approach. Ifac-Papersonline, v. 52, n. 13, p. 2704-2709, 2019. Disponível em: https://www.sciencedirect.com/science/article/pii/S2405896319316040. Acesso em: 03 ago. 2022.
MARMOLEJO-SAUCEDO, Jose Antonio. Design and Development of Digital Twins: a case study in supply chains. Mobile Networks And Applications, v. 25, n. 6, p. 2141-2160, 6 jun. 2020. Disponível em: https://link.springer.com/article/10.1007/s11036-020-01557-9. Acesso em: 03 ago. 2022.
MÉNDEZ, Jorge Borrell; CREMADES, David; NICOLAS, Fernando; PEREZ-VIDAL, Carlos; SEGURA-HERAS, Jose Vicente. Conceptual and Preliminary Design of a Shoe Manufacturing Plant. Applied Sciences, v. 11, n. 22, p. 11055, 22 nov. 2021. Disponível em: https://www.mdpi.com/2076-3417/11/22/11055. Acesso em: 02 ago. 2022.
MOOSAVI, Javid; HOSSEINI, Seyedmohsen. Simulation-based assessment of supply chain resilience with consideration of recovery strategies in the COVID-19 pandemic context. Computers & Industrial Engineering, v. 160, p. 107593, out. 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S0360835221004976?via%3Dihub. Acesso em: 30 jul. 2022.
MUKHERJEE, Debmalya; LIM, Weng Marc; KUMAR, Satish; DONTHU, Naveen. Guidelines for advancing theory and practice through bibliometric research. Journal Of Business Research, v. 148, p. 101-115, set. 2022. Disponível em: https://www-sciencedirect.ez359.periodicos.capes.gov.br/science/article/pii/S0148296322003824. Acesso em: 23 jun. 2022.
NUNES, L.J.R.; CAUSER, T.P.; CIOLKOSZ, D. Biomass for energy: a review on supply chain management models. Renewable And Sustainable Energy Reviews, v. 120, p. 109658, mar. 2020. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S1364032119308640?via%3Dihub. Acesso em: 30 set. 2022.
PONOMAROV, S. Y.; HOLCOMB, M. C. Understanding the concept of supply chain resilience. The International Journal of Logistics Management, v. 20, n. 1, p. 124– 143, 2009. Disponível em: https://www.emerald.com/insight/content/doi/10.1108/09574090910954873/full/html. Acesso em: jun. 30 jul. 2022.
PROSSER, Wendy; FOLORUNSO, Olamide; MCCORD, Joseph; ROCHE, Gregory; TIEN, Marie; HATCH, Benjamin; SPISAK, Cary; GENOVESE, Eleonora; PARE, Bibata; DONATIEN, Koffi. Redesigning immunization supply chains: results from three country analyses. Vaccine, v. 39, n. 16, p. 2246-2254, abr. 2021. Disponível em: https://www.sciencedirect.com/science/article/pii/S0264410X21003182?via%3Dihub. Acesso em: 03 ago. 2022.
RINALDI, Marta; MURINO, Teresa; GEBENNINI, Elisa; MOREA, Donato; BOTTANI, Eleonora. A literature review on quantitative models for supply chain risk management: can they be applied to pandemic disruptions?. Computers & Industrial Engineering, v. 170, p. 108329, ago. 2022. Disponível em: https://www-sciencedirect.ez359.periodicos.capes.gov.br/science/article/pii/S0360835222003825. Acesso em: 15 ago. 2022.
SAFARA, Fatemeh. A Computational Model to Predict Consumer Behaviour During COVID-19 Pandemic. Computational Economics, v. 59, n. 4, p. 1525-1538, 5 nov. 2020. Disponível em: https://link.springer.com/article/10.1007/s10614-020-10069-3. Acesso em: 10 ago. 2022.
SASSMANNSHAUSEN, Sean Patrick; VOLKMANN, Christine. The Scientometrics of Social Entrepreneurship and Its Establishment as an Academic Field. Journal Of Small Business Management, v. 56, n. 2, p. 251-273, 18 jul. 2016. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1111/jsbm.12254. Acesso em: 23 jun. 2022.
SHAVARANI, Seyed Mahdi; MOSALLAEIPOUR, Sam; GOLABI, Mahmoud; İZBIRAK, Gökhan. A congested capacitated multi-level fuzzy facility location problem: an efficient drone delivery system. Computers & Operations Research, v. 108, p. 57-68, ago. 2019. Disponível em: https://www-sciencedirect.ez359.periodicos.capes.gov.br/science/article/pii/S0305054819300784. Acesso em: 06 ago. 2022.
SILVA, Cristiane. R.; GOBBI, Beatriz. C.; SIMÃO, Ana. A. O uso da análise de conteúdo como uma ferramenta para a pesquisa qualitativa: descrição e aplicação do método. Organizações Rurais Agroindustriais, Lavras, v. 7, n. 1, p. 70-81, 2005. Disponível em: https://www.researchgate.net/publication/278001718. Acesso em: 23 jun. 2022.
SOUREK, David. Software Support of City Logistics´ Processes. Transportation Research Procedia, v. 55, p. 172-179, 2021. Disponível em: https://www-sciencedirect.ez359.periodicos.capes.gov.br/science/article/pii/S2352146521003665. Acesso em: 05 ago. 2022.
SU, Hsin-Ning; LEE, Pei-Chun. Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in technology foresight. Scientometrics, v. 85, n. 1, p. 65-79, 22 jun. 2010. Disponível em: https://link.springer.com/article/10.1007/s11192-010-0259-8. Acesso em: 23 jun. 2022.
SUN, Xu; ANDOH, Eugenia Ama; YU, Hao. A simulation-based analysis for effective distribution of COVID-19 vaccines: a case study in norway. Transportation Research Interdisciplinary Perspectives, v. 11, p. 100453, set. 2021. Disponível em: https://www-sciencedirect.ez359.periodicos.capes.gov.br/science/article/pii/S2590198221001585. Acesso em: 25 jul. 2022.
THE ANYLOGIC COMPANY. AnyLogistix® Overview. Disponível em: https://www.anylogic.com/resources/educational-videos/anyLogistix®-overview/. Acesso em: 25 jul. 2022a.
THE ANYLOGIC COMPANY. Better supply chain and logistics — anylogistix optimization, simulation, and analytics software tool. Disponível em: https://www.anylogistix.com/. Acesso em: 09 out. 2022b.
TIMPERIO, Giuseppe; TIWARI, Sunil; SÁNCHEZ, José Manuel Gaspar; MARTÍN, Rafael Adrián García; SOUZA, Robert de. Integrated decision support framework for distribution network design. International Journal Of Production Research, v. 58, n. 8, p. 2490-2509, 24 out. 2020. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/00207543.2019.1680894?journalCode=tprs20. Acesso em: 30 set. 2022.
WANKE, Peter Fernandes; CORRêA, Henrique Luiz. The relationship between the logistics complexity of manufacturing companies and their supply chain management. Production, v. 24, n. 2, p. 233-254, jun. 2014. Disponível em: https://www.scielo.br/j/prod/a/d3YbdMx5P5zpRtHncCbm8DH/?lang=en. Acesso em: 01 out. 2022.
ZIELSKE, Malena; HELD, Tobias. Agile methods used by traditional logistics companies and logistics start-ups: a systematic literature review. Journal Of Systems And Software, v. 190, p. 111328, ago. 2022. Disponível em: https://www-sciencedirect.ez359.periodicos.capes.gov.br/science/article/pii/S016412122200070X. Acesso em: 08 ago. 2022.
ZMESKAL, Ekaterina; MAJERCÁK, Jozef; KURBATOVA, Anna; KURENKOV, Petr; SAFRONOVA, Anastasia. Software for the Application of the Restriction Assessment Methodology in Logistics Chains. Transportation Research Procedia, v. 54, p. 69-75, 2021. Disponível em: https://wwwsciencedirect.ez359.periodicos.capes.gov.br/science/article/pii/S235214652100212X. Acesso em: 05 ago. 2022.
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Revista Produção Online
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
A Revista se reserva no direito de efetuar, no artigo publicado, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua, respeitando, porém, o estilo dos autores.
A obra publicada é de inteira responsabilidade do(s) autor(es), cabendo à Revista Produção Online apenas a avaliação da obra, na qualidade de veículo de publicação científica. A Revista Produção Online não se responsabiliza por eventuais violações à Lei nº 9.610/1998, Lei de Direito Autoral.
A revista Produção Online permite que o autor detenha o copyright dos artigos aceitos para publicação, sem restrições.
Esta obra está licenciada sob uma Licença Creative Commons.