Benefícios e barreiras para aceitação de medidores inteligentes residenciais

Jonathan Gumz, Diego Castro Fettermann

Resumo


Programas de implantação de medidores inteligentes nas residências são fundamentais para se atingirem as metas de modernização da rede elétrica e uso racional das fontes de energia. Porém, além da implantação dos aparelhos nas residências é necessária a aceitação dos consumidores, que possuem papel fundamental na redução do uso de energia elétrica. O objetivo deste estudo é investigar na literatura quais fatores influenciam positivamente (benefícios) e negativamente (barreiras) para a aceitação. Para isso, foi realizada uma revisão sistemática da literatura usando o método PRISMA (Preferred Research Items for Systematic Review and Meta-Analyses). Foram analisados 172 artigos, dos quais 42 são estudos aplicados. Os resultados sugerem 26 fatores diferentes que influenciam a aceitação, sendo os benefícios mais importantes “melhor gerenciamento de energia através do feedback”, “eco-preocupação” e “expectativa de ganho financeiro”, já as barreiras mais relevantes são “segurança ameaçada”, “falta de familiaridade” e “custos associados”. As pesquisas de aceitação estão ainda muito concentradas na Europa, EUA e Austrália, sendo necessário que países em desenvolvimento, que lideram a expansão do uso de fontes renováveis em suas matrizes energéticas, também considerem investigar a aceitação local de medidores para obter sucesso em suas implementações.

Palavras-chave


Medidores inteligentes. Aceitação. Método PRISMA.

Texto completo:

PDF ♪ÁUDIO♪

Referências


ABDMOULEH, Z.; GASTLI, A.; BEN-BRAHIM, L. Survey about public perception regarding smart grid, energy efficiency & renewable energies applications in Qatar. Renewable and Sustainable Energy Reviews, v. 82, p. 168–175, 2018. https://doi.org/10.1016/j.rser.2017.09.023

AKETI, P.; SEN, S. Modeling demand response and economic impact of advanced and smart metering. Energy Systems, v. 5, n. 3, p. 583–606, 2014. https://doi.org/10.1007/s12667-013-0113-1

ALKAWSI, G. A.; ALI, N. B. A systematic review of individuals’ acceptance of IOT-based technologies. International Journal of Engineering and Technology, v. 7, n. 4.35, p. 136–142, 2018. https://doi.org/10.14419/ijet.v7i4.35.22342

ALKAWSI, G. A.; ALI, N. B.; ALGHUSHAMI, A. Toward understanding individuals’ acceptance of internet of things –based services: Developing an instrument to measure the acceptance of smart meters. Journal of Theoretical and Applied Information Technology, v. 96, n. 13, p. 4265–4281, 2018.

ALSKAIF, T. et al. Gamification-based framework for engagement of residential customers in energy applications. Energy Research and Social Science, v. 44, p. 187–195, 2018. https://doi.org/10.1016/j.erss.2018.04.043

ARNOLD, O. et al. Capturing the Environmental Impact of Individual Lifestyles: Evidence of the Criterion Validity of the General Ecological Behavior Scale. Environment and Behavior, v. 50, n. 3, p. 350–372, 2018. https://doi.org/10.1177/0013916517701796

AVANCINI, D. B. et al. Energy meters evolution in smart grids: A review. Journal of Cleaner Production, v. 217, p. 702–715, 2019. https://doi.org/10.1016/j.jclepro.2019.01.229

AYODELE, O. A.; CHANG-RICHARDS, A.; GONZÁLEZ, V. Factors Affecting Workforce Turnover in the Construction Sector: A Systematic Review. Journal of Construction Engineering and Management, v. 146, n. 2, p. 03119010, 2020. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001725

BALLO, I. F. Imagining energy futures: Sociotechnical imaginaries of the future Smart Grid in Norway. Energy Research and Social Science, v. 9, p. 9–20, 2015. https://doi.org/10.1016/j.erss.2015.08.015

BALTA-OZKAN, N.; AMERIGHI, O.; BOTELER, B. A comparison of consumer perceptions towards smart homes in the UK, Germany and Italy: reflections for policy and future research. Technology Analysis and Strategic Management, v. 26, n. 10, p. 1176–1195, 2014. https://doi.org/10.1080/09537325.2014.975788

BARBOUR, E.; GONZÁLEZ, M. C. Projecting battery adoption in the prosumer era. Applied Energy, v. 215, p. 356–370, 2018. https://doi.org/10.1016/j.apenergy.2018.01.056

BARNICOAT, G.; DANSON, M. The ageing population and smart metering: A field study of householders’ attitudes and behaviours towards energy use in Scotland. Energy Research and Social Science, v. 9, n. September 2015, p. 107–115, 2015. https://doi.org/10.1016/j.erss.2015.08.020

BEAL, C. D. et al. Identifying and understanding the drivers of high water consumption in remote Australian Aboriginal and Torres Strait Island communities. Journal of Cleaner Production, v. 172, p. 2425–2434, 2018. https://doi.org/10.1016/j.jclepro.2017.11.168

BEAL, C. D.; FLYNN, J. Toward the digital water age: Survey and case studies of Australian water utility smart-metering programs. Utilities Policy, v. 32, p. 29–37, 2015. https://doi.org/10.1016/j.jup.2014.12.006

BEAL, C. D.; GURUNG, T. R.; STEWART, R. A. Modelling the impacts of water efficient technologies on energy intensive water systems in remote and isolated communities. Clean Technologies and Environmental Policy, v. 18, n. 6, p. 1713–1723, 2016. https://doi.org/10.1007/s10098-016-1241-9

BEGIER, B. Effective cooperation with energy consumers: An example of an ethical approach to introduce an innovative solution. Journal of Information, Communication and Ethics in Society, v. 12, n. 2, p. 107–121, 2014. https://doi.org/10.1108/JICES-07-2013-0021

BERTOLDO, R.; POUMADÈRE, M.; RODRIGUES JR, L. C. When meters start to talk: The public’s encounter with smart meters in France. Energy Research and Social Science, v. 9, p. 146–156, 2015. https://doi.org/10.1016/j.erss.2015.08.014

BIGERNA, S. et al. A new unified approach to evaluate economic acceptance towards main green technologies using the meta-analysis. Journal of Cleaner Production, v. 167, p. 1251–1262, 2018. https://doi.org/10.1016/j.jclepro.2017.07.188

BOAIT, P. J. et al. Making legacy thermal storage heating fit for the smart grid. Energy and Buildings, v. 138, p. 630–640, 2017. https://doi.org/10.1016/j.enbuild.2016.12.053

BOOYSEN, M. J.; VISSER, M.; BURGER, R. Temporal case study of household behavioural response to Cape Town’s “Day Zero” using smart meter data. Water Research, v. 149, p. 414–420, 2019. https://doi.org/10.1016/j.watres.2018.11.035

BOUDET, H. S. Public perceptions of and responses to new energy technologies. Nature Energy, v. 4, n. 6, p. 446–455, 2019. https://doi.org/10.1038/s41560-019-0399-x

BOYLE, T. et al. Intelligent metering for urban water: A review. Water, v. 5, n. 3, p. 1052–1081, 2013. https://doi.org/10.3390/w5031052

BROWN, C. J.; MARKUSSON, N. The responses of older adults to smart energy monitors. Energy Policy, v. 130, p. 218–226, 2019. https://doi.org/10.1016/j.enpol.2019.03.063

BUCHANAN, K. et al. The British public’s perception of the UK smart metering initiative: Threats and opportunities. Energy Policy, v. 91, p. 87–97, 2016. https://doi.org/10.1016/j.enpol.2016.01.003

BUCHANAN, K.; RUSSO, R.; ANDERSON, B. The question of energy reduction: The problem(s) with feedback. Energy Policy, v. 77, p. 89–96, 2015. https://doi.org/10.1016/j.enpol.2014.12.008

BUGDEN, D.; STEDMAN, R. A synthetic view of acceptance and engagement with smart meters in the United States. Energy Research and Social Science, v. 47, n. January 2019, p. 137–145, 2019. https://doi.org/10.1016/j.erss.2018.08.025

BURCHELL, K.; RETTIE, R.; ROBERTS, T. C. Householder engagement with energy consumption feedback: The role of community action and communications. Energy Policy, v. 88, p. 178–186, 2016. https://doi.org/10.1016/j.enpol.2015.10.019

BURYK, S. et al. Investigating preferences for dynamic electricity tariffs: The effect of environmental and system benefit disclosure. Energy Policy, v. 80, p. 190–195, 2015. https://doi.org/10.1016/j.enpol.2015.01.030

CAHN, A.; KATZ, D.; GHERMANDI, A. Analyzing Water Customer Preferences for Online Feedback Technologies in Israel: A Prototype Study. Journal of Water Resources Planning and Management, v. 146, n. 4, p. 06020002, 2020. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001179

CAMPILLO, J. et al. Is real-time electricity pricing suitable for residential users without demand-side management? Energy, v. 109, p. 310–325, 2016. https://doi.org/10.1016/j.energy.2016.04.105

CHABÉ-FERRET, S. et al. Can we nudge farmers into saving water? Evidence from a randomised experiment. European Review of Agricultural Economics, v. 46, n. 3, p. 393–416, 2019. https://doi.org/10.1093/erae/jbz022

CHAWLA, Y.; KOWALSKA-PYZALSKA, A. Public Awareness and Consumer Acceptance of Smart Meters among Polish Social Media Users. Energies, v. 12, n. 14, p. 2759, 2019. https://doi.org/10.3390/en12142759

CHAWLA, Y.; KOWALSKA-PYZALSKA, A.; ORALHAN, B. Attitudes and opinions of social media users towards smart meters’ rollout in Turkey. Energies, v. 13, n. 3, p. 732, 2020. https://doi.org/10.3390/en13030732

CHAWLA, Y.; KOWALSKA-PYZALSKA, A.; SILVEIRA, P. D. Marketing and communications channels for diffusion of electricity smart meters in Portugal. Telematics and Informatics, v. 50, p. 101385, 2020. https://doi.org/10.1016/j.tele.2020.101385

CHAWLA, Y.; KOWALSKA-PYZALSKA, A.; WIDAYAT, W. Consumer Willingness and Acceptance of Smart Meters in Indonesia. Resources, v. 8, n. 4, p. 177, 2019. https://doi.org/10.3390/resources8040177

CHEN, C.; XU, X.; ARPAN, L. Between the technology acceptance model and sustainable energy technology acceptance model: Investigating smart meter acceptance in the United States. Energy Research and Social Science, v. 25, p. 93–104, 2017. https://doi.org/10.1016/j.erss.2016.12.011

CHEN, K.-Y.; YEH, C.-F. Factors affecting adoption of smart meters in the post-Fukushima era in Taiwan: an extended protection motivation theory perspective. Behaviour and Information Technology, v. 36, n. 9, p. 955–969, 2017. https://doi.org/10.1080/0144929X.2017.1317363

CHEN, V. L.; DELMAS, M. A.; KAISER, W. J. Real-time, appliance-level electricity use feedback system: How to engage users? Energy and Buildings, v. 70, p. 455–462, 2014. https://doi.org/10.1016/j.enbuild.2013.11.069

CHOI, D. G. et al. Why Have Voluntary Time-of-Use Tariffs Fallen Short in the Residential Sector? Production and Operations Management, v. 29, n. 3, p. 617–642, 2020. https://doi.org/10.1111/poms.13126

CHOU, J.-S. et al. Cross-country review of smart grid adoption in residential buildings. Renewable and Sustainable Energy Reviews, v. 48, p. 192–213, 2015. https://doi.org/10.1016/j.rser.2015.03.055

CHOU, J.-S.; YUTAMI, I. G. A. N. Smart meter adoption and deployment strategy for residential buildings in Indonesia. Applied Energy, v. 128, p. 336–349, 2014. https://doi.org/10.1016/j.apenergy.2014.04.083

DARBY, S. Smart metering: what potential for householder engagement? Building Research and Information, v. 38, n. 5, p. 442–457, 2010. https://doi.org/10.1080/09613218.2010.492660

DAVIES, K. et al. Water-saving impacts of Smart Meter technology: An empirical 5 year, whole-of-community study in Sydney, Australia. Water Resources Research, v. 50, n. 9, p. 7348–7358, set. 2014. https://doi.org/10.1002/2014WR015812

DAVIS, F. D.; BAGOZZI, R. P.; WARSHAW, P. R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, v. 35, n. 8, p. 982–1003, 1989. https://doi.org/10.1287/mnsc.35.8.982

DEGEN, H.; MOSTASHARI, A.; MAURER, M. A sociotechnical systems model for smart-grid adoption in mid-sized urban environments. International Journal of Energy Technology and Policy, v. 10, n. 1, p. 1–20, 2014. https://doi.org/10.1504/IJETP.2014.065034

DÜŞTEGÖR, D. et al. A smarter electricity grid for the Eastern Province of Saudi Arabia: Perceptions and policy implications. Utilities Policy, v. 50, p. 26–39, 2018. https://doi.org/10.1016/j.jup.2017.09.009

DYSON, M. E. H. et al. Using smart meter data to estimate demand response potential, with application to solar energy integration. Energy Policy, v. 73, p. 607–619, 2014. https://doi.org/10.1016/j.enpol.2014.05.053

ELLABBAN, O.; ABU-RUB, H. Smart grid customers’ acceptance and engagement: An overview. Renewable and Sustainable Energy Reviews, v. 65, p. 1285–1298, 2016. https://doi.org/10.1016/j.rser.2016.06.021

ESPLUGA, J. et al. How to address citizens’ practices and policies on sustainability? A consultative tool for brokering policy-related knowledge between the worlds of policymaking and everyday citizens’ life. Evidence and Policy, v. 12, n. 3, p. 381–404, 2016. https://doi.org/10.1332/174426416X14738559545991

EUROPEAN UNION. Directive of 2009/72/EC of the European Parliament and of the Council of 13 July 2009 Concerning Common Rules for the Internal Market in Electricity and Repealing Directive 2003/54/EC. Official Journal of the European Union, v. L211, n. August, p. L 211/55-L 211/93, 2009. Disponível em: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:211:0055:0093:EN:PDF.

FARUQUI, A.; HARRIS, D.; HLEDIK, R. Unlocking the €53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU’s smart grid investment. Energy Policy, v. 38, n. 10, p. 6222–6231, 2010. https://doi.org/10.1016/j.enpol.2010.06.010

FENSEL, A. et al. SESAME-S: Semantic smart home system for energy efficiency. Informatik-Spektrum, v. 36, n. 1, p. 46–57, 2013. https://doi.org/10.1007/s00287-012-0665-9

FENSEL, A.; KUMAR, V.; TOMIC, S. D. K. End-user interfaces for energy-efficient semantically enabled smart homes. Energy Efficiency, v. 7, n. 4, p. 655–675, 2014. https://doi.org/10.1007/s12053-013-9246-2

FETTERMANN, D. C. et al. Configuration of a smart meter for Brazilian customers. Energy Policy, v. 139, p. 111309, 2020a. https://doi.org/10.1016/j.enpol.2020.111309

FETTERMANN, D. C. et al. Getting smarter about household energy: the who and what of demand for smart meters. Building Research and Information, 2020b. https://doi.org/10.1080/09613218.2020.1807896

GAO, X. et al. Systematic review on the implementation methodologies of inherent safety in chemical process. Journal of Loss Prevention in the Process Industries, v. 65, p. 104092, 2020. https://doi.org/10.1016/j.jlp.2020.104092

GAO, Y.; FOGGO, B.; YU, N. A Physically Inspired Data-Driven Model for Electricity Theft Detection With Smart Meter Data. IEEE Transactions on Industrial Informatics, v. 15, n. 9, p. 5076–5088, 2019. https://doi.org/10.1109/TII.2019.2898171

GARRAB, A.; BOUALLEGUE, A.; BOUALLEGUE, R. An agent based fuzzy control for smart home energy management in smart grid environment. International Journal of Renewable Energy Research, v. 7, n. 2, p. 599–612, 2017.

GERPOTT, T. J.; PAUKERT, M. Determinants of willingness to pay for smart meters: An empirical analysis of household customers in Germany. Energy Policy, v. 61, p. 483–495, 2013. https://doi.org/10.1016/j.enpol.2013.06.012

GIACOMIN, J.; BERTOLA, D. Human emotional response to energy visualisations. International Journal of Industrial Ergonomics, v. 42, n. 6, p. 542–552, 2012. https://doi.org/10.1016/j.ergon.2012.07.006

GIEST, S. Making energy personal: Policy coordination challenges in UK smart meter implementation. Journal of Public Policy, v. 40, n. 4, p. 553–572, 2019. https://doi.org/10.1017/S0143814X19000163

GRANDCLÉMENT, C.; NADAÏ, A. Devising the consumer of the competitive electricity market: the mundane meter, the unbundling doctrine, and the re-bundling of choice. Journal of Cultural Economy, v. 11, n. 5, p. 440–457, 2018. https://doi.org/10.1080/17530350.2018.1488269

GUERREIRO, S. et al. Making energy visible: sociopsychological aspects associated with the use of smart meters. Energy Efficiency, v. 8, n. 6, p. 1149–1167, 2015. https://doi.org/10.1007/s12053-015-9344-4

GUO, P.; LAM, J. C. K.; LI, V. O. K. Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach. Applied Energy, v. 235, p. 900–913, 2019. https://doi.org/10.1016/j.apenergy.2018.11.014

HALL, N. L.; JEANNERET, T. D.; RAI, A. Cost-reflective electricity pricing: Consumer preferences and perceptions. Energy Policy, v. 95, p. 62–72, 2016. https://doi.org/10.1016/j.enpol.2016.04.042

HARTWAY, R.; PRICE, S.; WOO, C. K. Smart meter, customer choice and profitable time-of-use rate option. Energy, v. 24, n. 10, p. 895–903, 1999. https://doi.org/10.1016/S0360-5442(99)00040-7

HESS, D. J. Smart meters and public acceptance: Comparative analysis and governance implications. Health, Risk and Society, v. 16, n. 3, p. 243–258, 2014. https://doi.org/10.1080/13698575.2014.911821

HESS, D. J.; COLEY, J. S. Wireless smart meters and public acceptance: The environment, limited choices, and precautionary politics. Public Understanding of Science, v. 23, n. 6, p. 688–702, 2014. https://doi.org/10.1177/0963662512464936

HIELSCHER, S.; SOVACOOL, B. K. Contested smart and low-carbon energy futures: Media discourses of smart meters in the United Kingdom. Journal of Cleaner Production, v. 195, p. 978–990, 2018. https://doi.org/10.1016/j.jclepro.2018.05.227

HMIELOWSKI, J. D. et al. The social dimensions of smart meters in the United States: Demographics, privacy, and technology readiness. Energy Research and Social Science, v. 55, p. 189–197, 2019. https://doi.org/10.1016/j.erss.2019.05.003

HOSSAIN, M. S. et al. Role of smart grid in renewable energy: An overview. Renewable and Sustainable Energy Reviews, v. 60, p. 1168–1184, 2016. https://doi.org/10.1016/j.rser.2015.09.098

HU, C. et al. CP_ABSC: An attribute-based signcryption scheme to secure multicast communications in smart grids. Mathematical Foundations of Computing, v. 1, n. 1, p. 77–100, 2018.

HUIJTS, N. M. A.; MOLIN, E. J. E.; STEG, L. Psychological factors influencing sustainable energy technology acceptance: A review-based comprehensive framework. Renewable and Sustainable Energy Reviews, v. 16, n. 1, p. 525–531, 2012. https://doi.org/10.1016/j.rser.2011.08.018

ISLAM, S. N.; BAIG, Z.; ZEADALLY, S. Physical Layer Security for the Smart Grid: Vulnerabilities, Threats, and Countermeasures. IEEE Transactions on Industrial Informatics, v. 15, n. 12, p. 6522–6530, 2019. https://doi.org/10.1109/TII.2019.2931436

JARAMILLO, N. C.; CARDONA, C. J. F.; HENAO, J. D. V. Smart meters adoption: recent advances and future trends. DYNA, v. 81, n. 183, p. 221–230, 24 fev. 2014. Disponível em: http://www.scopus.com/inward/record.url?eid=2-s2.0-84894593003&partnerID=MN8TOARS. https://doi.org/10.15446/dyna.v81n183.38148

JEGEN, M.; PHILION, X. D. Power and smart meters: A political perspective on the social acceptance of energy projects. Canadian Public Administration, v. 60, n. 1, p. 68–88, 2017. https://doi.org/10.1111/capa.12202

KALLMAN, M. E.; FRICKEL, S. Power to the people: industrial transition movements and energy populism. Environmental Sociology, v. 5, n. 3, p. 255–268, 2019a. https://doi.org/10.1080/23251042.2018.1531497

KALLMAN, M. E.; FRICKEL, S. Nested logics and smart meter adoption: Institutional processes and organizational change in the diffusion of smart meters in the United States. Energy Research and Social Science, v. 57, n. November 2019, p. 101249, 2019b. https://doi.org/10.1016/j.erss.2019.101249

KAUFMANN, S.; KÜNZEL, K.; LOOCK, M. Customer value of smart metering: Explorative evidence from a choice-based conjoint study in Switzerland. Energy Policy, v. 53, p. 229–239, 2013. https://doi.org/10.1016/j.enpol.2012.10.072

KIGUCHI, Y. et al. Predicting intra-day load profiles under time-of-use tariffs using smart meter data. Energy, v. 173, p. 959–970, 2019. https://doi.org/10.1016/j.energy.2019.01.037

KING, N. J.; JESSEN, P. W. Smart metering systems and data sharing: Why getting a smart meter should also mean getting strong information privacy controls to manage data sharing. International Journal of Law and Information Technology, v. 22, n. 3, p. 215–253, 2014. https://doi.org/10.1093/ijlit/eau001

KNYRIM, R.; TRIEB, G. Smart metering under EU data protection law. International Data Privacy Law, v. 1, n. 2, p. 121–128, 2011. https://doi.org/10.1093/idpl/ipr004

KOWALSKA-PYZALSKA, A.; BYRKA, K. Determinants of the willingness to energy monitoring by residential consumers: A case study in the city of Wroclaw in Poland. Energies, v. 12, n. 5, p. 907, 2019. https://doi.org/10.3390/en12050907

KRISHNAMURTI, T. et al. Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters. Energy Policy, v. 41, p. 790–797, 2012. https://doi.org/10.1016/j.enpol.2011.11.047

KUMAR, A. Beyond technical smartness: Rethinking the development and implementation of sociotechnical smart grids in India. Energy Research and Social Science, v. 49, n. March 2019, p. 158–168, 2019. https://doi.org/10.1016/j.erss.2018.10.026

LEE, S.-H.; CHOI, K.-W. A study of smart meter security using Gaussian mixture model. Information, v. 20, n. 6, p. 3921–3926, 2017.

LIBERATI, A. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine, v. 6, n. 7, p. e1000100, 2009. https://doi.org/10.1371/journal.pmed.1000100

LIU, A.; MUKHEIBIR, P. Digital metering feedback and changes in water consumption – A review. Resources, Conservation and Recycling, v. 134, p. 136–148, 2018. https://doi.org/10.1016/j.resconrec.2018.03.010

LOSSIN, F.; LODER, A.; STAAKE, T. Energy informatics for behavioral change: Increasing the participation rate in an IT-based energy conservation campaign using social norms and incentives. Computer Science - Research and Development, v. 31, n. 3, p. 149–155, 2016. https://doi.org/10.1007/s00450-014-0295-3

MAH, D. N. et al. Understanding undergraduate students’ perceptions of dynamic pricing policies: An exploratory study of two pilot deliberative pollings (DPs) in Guangzhou, China and Kyoto, Japan. Journal of Cleaner Production, v. 202, p. 160–173, 2018. https://doi.org/10.1016/j.jclepro.2018.07.255

MARCH, H. et al. Household Smart Water Metering in Spain: Insights from the Experience of Remote Meter Reading in Alicante. Sustainability, v. 9, n. 4, p. 582, 11 abr. 2017. Disponível em: http://www.mdpi.com/2071-1050/9/4/582. https://doi.org/10.3390/su9040582

MARQUES, V.; BENTO, N.; COSTA, P. M. The “Smart Paradox”: Stimulate the deployment of smart grids with effective regulatory instruments. Energy, v. 69, p. 96–103, 2014. https://doi.org/10.1016/j.energy.2014.01.007

MATSCHOSS, K.; KAHMA, N.; HEISKANEN, E. Pioneering customers as change agents for new energy efficiency services—an empirical study in the Finnish electricity markets. Energy Efficiency, v. 8, n. 5, p. 827–843, 2015. https://doi.org/10.1007/s12053-014-9300-8

MELVILLE, E. et al. The electric commons: A qualitative study of community accountability. Energy Policy, v. 106, p. 12–21, 2017. https://doi.org/10.1016/j.enpol.2017.03.035

MEYERS, R. J.; WILLIAMS, E. D.; MATTHEWS, H. S. Scoping the potential of monitoring and control technologies to reduce energy use in homes. Energy and Buildings, v. 42, n. 5, p. 563–569, 2010. https://doi.org/10.1016/j.enbuild.2009.10.026

MICHAELS, L.; PARAG, Y. Motivations and barriers to integrating ‘prosuming’ services into the future decentralized electricity grid: Findings from Israel. Energy Research and Social Science, v. 21, p. 70–83, 2016. https://doi.org/10.1016/j.erss.2016.06.023

MOGLES, N. et al. How smart do smart meters need to be? Building and Environment, v. 125, p. 439–450, 2017. https://doi.org/10.1016/j.buildenv.2017.09.008

MONTGINOUL, M.; VESTIER, A. Smart metering: A water-saving solution? Consider communication strategies and user perceptions first. Evidence from a French case study. Environmental Modelling and Software, v. 104, p. 188–198, 2018. https://doi.org/10.1016/j.envsoft.2018.02.006

MORENO-BLANCO, D. et al. Technologies for monitoring lifestyle habits related to brain health: A systematic review. Sensors, v. 19, p. 4183, 2019. https://doi.org/10.3390/s19194183

MOSER, C. The role of perceived control over appliances in the acceptance of electricity load-shifting programmes. Energy Efficiency, v. 10, n. 5, p. 1115–1127, 2017. https://doi.org/10.1007/s12053-017-9508-5

MURTAGH, N. et al. Individual energy use and feedback in an office setting: A field trial. Energy Policy, v. 62, p. 717–728, 2013. https://doi.org/10.1016/j.enpol.2013.07.090

NACHREINER, M. et al. An analysis of smart metering information systems: A psychological model of self-regulated behavioural change. Energy Research and Social Science, v. 9, p. 85–97, 2015. https://doi.org/10.1016/j.erss.2015.08.016

NIKOLAIDIS, P.; CHATZIS, S.; POULLIKKAS, A. Life cycle cost analysis of electricity storage facilities in flexible power systems. International Journal of Sustainable Energy, v. 38, n. 8, p. 752–772, 2019. https://doi.org/10.1080/14786451.2019.1579815

NOVAK, J. et al. Integrating behavioural change and gamified incentive modelling for stimulating water saving. Environmental Modelling and Software, v. 102, p. 120–137, 2018. https://doi.org/10.1016/j.envsoft.2017.11.038

OLMOS, L. et al. Energy efficiency actions related to the rollout of smart meters for small consumers, application to the Austrian system. Energy, v. 36, n. 7, p. 4396–4409, 2011. https://doi.org/10.1016/j.energy.2011.04.003

OLTRA, C. et al. A qualitative study of users’ engagement with real-time feedback from in-house energy consumption displays. Energy Policy, v. 61, p. 788–792, 2013. https://doi.org/10.1016/j.enpol.2013.06.127

PAIHO, S. et al. Increasing flexibility of Finnish energy systems—A review of potential technologies and means. Sustainable Cities and Society, v. 43, p. 509–523, 2018. https://doi.org/10.1016/j.scs.2018.09.015

PARK, C.-K.; KIM, H.-J.; KIM, Y.-S. A study of factors enhancing smart grid consumer engagement. Energy Policy, v. 72, p. 211–218, 2014. https://doi.org/10.1016/j.enpol.2014.03.017

PETERS, D.; AXSEN, J.; MALLETT, A. The role of environmental framing in socio-political acceptance of smart grid: The case of British Columbia, Canada. Renewable and Sustainable Energy Reviews, v. 82, p. 1939–1951, 2018. https://doi.org/10.1016/j.rser.2017.06.020

RAIMI, K. T.; CARRICO, A. R. Understanding and beliefs about smart energy technology. Energy Research and Social Science, v. 12, p. 68–74, 2016. https://doi.org/10.1016/j.erss.2015.12.018

RAUSSER, G.; STRIELKOWSKI, W.; ŠTREIMIKIENĖ, D. Smart meters and household electricity consumption: A case study in Ireland. Energy and Environment, v. 29, n. 1, p. 131–146, 2018. https://doi.org/10.1177/0958305X17741385

REN21. Renewables 2020 Global Status Report. Paris: REN21 Secretariat, 2020.

RIXEN, M.; WEIGAND, J. Agent-based simulation of consumer demand for smart metering tariffs. International Journal of Innovation and Technology Management, v. 10, n. 5, p. 1340020, 2013. https://doi.org/10.1142/S0219877013400208

RIXEN, M.; WEIGAND, J. Agent-based simulation of policy induced diffusion of smart meters. Technological Forecasting and Social Change, v. 85, p. 153–167, 2014. https://doi.org/10.1016/j.techfore.2013.08.011

RYGHAUG, M.; SKJØLSVOLD, T. M.; HEIDENREICH, S. Creating energy citizenship through material participation. Social Studies of Science, v. 48, n. 2, p. 283–303, 2018. https://doi.org/10.1177/0306312718770286

SAREEN, S.; ROMMETVEIT, K. Smart gridlock? Challenging hegemonic framings of mitigation solutions and scalability. Environmental Research Letters, v. 14, n. 7, p. 075004, 2019. https://doi.org/10.1088/1748-9326/ab21e6

SCHOPFER, S.; TIEFENBECK, V.; STAAKE, T. Economic assessment of photovoltaic battery systems based on household load profiles. Applied Energy, v. 223, p. 229–248, 2018. https://doi.org/10.1016/j.apenergy.2018.03.185

SHIM, D.; KIM, S. W.; ALTMANN, J. Strategic management of residential electric services in the competitive market: Demand-oriented perspective. Energy and Environment, v. 29, n. 1, p. 49–66, 2018. https://doi.org/10.1177/0958305X17740234

SILVAST, A. et al. Who “uses” smart grids? The evolving nature of user representations in layered infrastructures. Sustainability, v. 10, n. 10, p. 3738, 2018. https://doi.org/10.3390/su10103738

SØNDERLUND, A. L. et al. Effectiveness of smart meter-based consumption feedback in curbing household water use: Knowns and unknowns. Journal of Water Resources Planning and Management, v. 142, n. 12, p. 04016060, 2016. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000703

STEWART, R. A. et al. Showering behavioural response to alarming visual display monitors: Longitudinal mixed method study. Behaviour and Information Technology, v. 32, n. 7, p. 695–711, 2013. https://doi.org/10.1080/0144929X.2011.577195

SUNIKKA-BLANK, M. et al. Improving Energy Efficiency of Social Housing Areas: A Case Study of a Retrofit Achieving an “A” Energy Performance Rating in the UK. European Planning Studies, v. 20, n. 1, p. 131–145, 2012. https://doi.org/10.1080/09654313.2011.638494

THRONDSEN, W. What do experts talk about when they talk about users? Expectations and imagined users in the smart grid. Energy Efficiency, v. 10, n. 2, p. 283–297, 3 abr. 2017. Disponível em: http://link.springer.com/10.1007/s12053-016-9456-5. https://doi.org/10.1007/s12053-016-9456-5

THRONDSEN, W.; RYGHAUG, M. Material participation and the smart grid: Exploring different modes of articulation. Energy Research and Social Science, v. 9, p. 157–165, 2015. https://doi.org/10.1016/j.erss.2015.08.012

TORRITI, J. People or machines? Assessing the impacts of smart meters and load controllers in Italian office spaces. Energy for Sustainable Development, v. 20, p. 86–91, 2014. https://doi.org/10.1016/j.esd.2014.01.006

VAN DE KAA, G. et al. How to Weigh Values in Value Sensitive Design: A Best Worst Method Approach for the Case of Smart Metering. Science and Engineering Ethics, v. 26, n. 1, p. 475–494, 2020. https://doi.org/10.1007/s11948-019-00105-3

VASSILEVA, I.; CAMPILLO, J. Consumers’ perspective on full-scale adoption of smart meters: A case study in Västerås, Sweden. Resources, v. 5, n. 1, p. 3, 2016. https://doi.org/10.3390/resources5010003

VASSILEVA, I.; CAMPILLO, J.; SCHWEDE, S. Technology assessment of the two most relevant aspects for improving urban energy efficiency identified in six mid-sized European cities from case studies in Sweden. Applied Energy, v. 194, p. 808–818, 2017. https://doi.org/10.1016/j.apenergy.2016.07.097

WANG, S. et al. A randomized response model for privacy preserving smart metering. IEEE Transactions on Smart Grid, v. 3, n. 3, p. 1317–1324, 2012. https://doi.org/10.1109/TSG.2012.2192487

WARKENTIN, M.; GOEL, S.; MENARD, P. Shared Benefits and Information Privacy: What Determines Smart Meter Technology Adoption? Journal of the Association for Information Systems, v. 18, n. 11, p. 758–786, 2017. https://doi.org/10.17705/1jais.00474

WARREN, P. The potential of smart technologies and micro-generation in UK SMEs. Energies, v. 10, n. 7, p. 1050, 2017. https://doi.org/10.3390/en10071050

WATSON, S. Consuming water smartly: the significance of sociocultural differences to water-saving initiatives. Local Environment, v. 22, n. 10, p. 1237–1251, 2017. https://doi.org/10.1080/13549839.2017.1334143

WEBER, M.; ŽARKO, I. P. A regulatory view on smart city services. Sensors, v. 19, n. 2, p. 415, 2019. https://doi.org/10.3390/s19020415

WEMYSS, D. et al. Examining community-level collaborative vs. competitive approaches to enhance household electricity-saving behavior. Energy Efficiency, v. 11, p. 2057–2075, 2018. https://doi.org/10.1007/s12053-018-9691-z

WILSON, C.; HARGREAVES, T.; HAUXWELL-BALDWIN, R. Benefits and risks of smart home technologies. Energy Policy, v. 103, p. 72–83, 2017. https://doi.org/10.1016/j.enpol.2016.12.047

WOLISZ, H. et al. Feasibility and potential of thermal demand side management in residential buildings considering different developments in the German energy market. Energy Conversion and Management, v. 107, p. 86–95, 2016. https://doi.org/10.1016/j.enconman.2015.06.059

WUNDERLICH, P.; VEIT, D. J.; SARKER, S. Adoption of sustainable technologies: a mixed-methods study of German households. MIS Quarterly, v. 43, n. 2, p. 673–691, 2019. https://doi.org/10.25300/MISQ/2019/12112

YANG, B. et al. Smart metering and systems for low-energy households: challenges, issues and benefits. Advances in Building Energy Research, v. 13, n. 1, p. 80–100, 2019. https://doi.org/10.1080/17512549.2017.1354782

ZHOU, S.; BROWN, M. A. Smart meter deployment in Europe: A comparative case study on the impacts of national policy schemes. Journal of Cleaner Production, v. 144, p. 22–32, 2017. https://doi.org/10.1016/j.jclepro.2016.12.031

ZHOU, S.; MATISOFF, D. C. Advanced Metering Infrastructure Deployment in the United States: The Impact of Polycentric Governance and Contextual Changes. Review of Policy Research, v. 33, n. 6, p. 646–665, 2016. https://doi.org/10.1111/ropr.12203

ZHOU, S.; NOONAN, D. S. Justice implications of clean energy policies and programs in the United States: A theoretical and empirical exploration. Sustainability, v. 11, n. 3, p. 807, 2019. https://doi.org/10.3390/su11030807




DOI: https://doi.org/10.14488/1676-1901.v21i1.4179

Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM


R. Eletr. de Eng. de Produção e Correlatas - ISSN 1676-1901 Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons. © 2002 / Todos os direitos reservados Associação Brasileira de Engenharia de Produção (ABEPRO) Universidade Federal de Santa Catarina (UFSC).                           Contato: producaoonline@gmail.com