Benefícios e barreiras para aceitação de medidores inteligentes residenciais
DOI:
https://doi.org/10.14488/1676-1901.v21i1.4179Palavras-chave:
Medidores inteligentes. Aceitação. Método PRISMA.Resumo
Programas de implantação de medidores inteligentes nas residências são fundamentais para se atingirem as metas de modernização da rede elétrica e uso racional das fontes de energia. Porém, além da implantação dos aparelhos nas residências é necessária a aceitação dos consumidores, que possuem papel fundamental na redução do uso de energia elétrica. O objetivo deste estudo é investigar na literatura quais fatores influenciam positivamente (benefícios) e negativamente (barreiras) para a aceitação. Para isso, foi realizada uma revisão sistemática da literatura usando o método PRISMA (Preferred Research Items for Systematic Review and Meta-Analyses). Foram analisados 172 artigos, dos quais 42 são estudos aplicados. Os resultados sugerem 26 fatores diferentes que influenciam a aceitação, sendo os benefícios mais importantes “melhor gerenciamento de energia através do feedback”, “eco-preocupação” e “expectativa de ganho financeiro”, já as barreiras mais relevantes são “segurança ameaçada”, “falta de familiaridade” e “custos associados”. As pesquisas de aceitação estão ainda muito concentradas na Europa, EUA e Austrália, sendo necessário que países em desenvolvimento, que lideram a expansão do uso de fontes renováveis em suas matrizes energéticas, também considerem investigar a aceitação local de medidores para obter sucesso em suas implementações.Downloads
Referências
ABDMOULEH, Z.; GASTLI, A.; BEN-BRAHIM, L. Survey about public perception regarding smart grid, energy efficiency & renewable energies applications in Qatar. Renewable and Sustainable Energy Reviews, v. 82, p. 168–175, 2018. https://doi.org/10.1016/j.rser.2017.09.023
AKETI, P.; SEN, S. Modeling demand response and economic impact of advanced and smart metering. Energy Systems, v. 5, n. 3, p. 583–606, 2014. https://doi.org/10.1007/s12667-013-0113-1
ALKAWSI, G. A.; ALI, N. B. A systematic review of individuals’ acceptance of IOT-based technologies. International Journal of Engineering and Technology, v. 7, n. 4.35, p. 136–142, 2018. https://doi.org/10.14419/ijet.v7i4.35.22342
ALKAWSI, G. A.; ALI, N. B.; ALGHUSHAMI, A. Toward understanding individuals’ acceptance of internet of things –based services: Developing an instrument to measure the acceptance of smart meters. Journal of Theoretical and Applied Information Technology, v. 96, n. 13, p. 4265–4281, 2018.
ALSKAIF, T. et al. Gamification-based framework for engagement of residential customers in energy applications. Energy Research and Social Science, v. 44, p. 187–195, 2018. https://doi.org/10.1016/j.erss.2018.04.043
ARNOLD, O. et al. Capturing the Environmental Impact of Individual Lifestyles: Evidence of the Criterion Validity of the General Ecological Behavior Scale. Environment and Behavior, v. 50, n. 3, p. 350–372, 2018. https://doi.org/10.1177/0013916517701796
AVANCINI, D. B. et al. Energy meters evolution in smart grids: A review. Journal of Cleaner Production, v. 217, p. 702–715, 2019. https://doi.org/10.1016/j.jclepro.2019.01.229
AYODELE, O. A.; CHANG-RICHARDS, A.; GONZÁLEZ, V. Factors Affecting Workforce Turnover in the Construction Sector: A Systematic Review. Journal of Construction Engineering and Management, v. 146, n. 2, p. 03119010, 2020. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001725
BALLO, I. F. Imagining energy futures: Sociotechnical imaginaries of the future Smart Grid in Norway. Energy Research and Social Science, v. 9, p. 9–20, 2015. https://doi.org/10.1016/j.erss.2015.08.015
BALTA-OZKAN, N.; AMERIGHI, O.; BOTELER, B. A comparison of consumer perceptions towards smart homes in the UK, Germany and Italy: reflections for policy and future research. Technology Analysis and Strategic Management, v. 26, n. 10, p. 1176–1195, 2014. https://doi.org/10.1080/09537325.2014.975788
BARBOUR, E.; GONZÁLEZ, M. C. Projecting battery adoption in the prosumer era. Applied Energy, v. 215, p. 356–370, 2018. https://doi.org/10.1016/j.apenergy.2018.01.056
BARNICOAT, G.; DANSON, M. The ageing population and smart metering: A field study of householders’ attitudes and behaviours towards energy use in Scotland. Energy Research and Social Science, v. 9, n. September 2015, p. 107–115, 2015. https://doi.org/10.1016/j.erss.2015.08.020
BEAL, C. D. et al. Identifying and understanding the drivers of high water consumption in remote Australian Aboriginal and Torres Strait Island communities. Journal of Cleaner Production, v. 172, p. 2425–2434, 2018. https://doi.org/10.1016/j.jclepro.2017.11.168
BEAL, C. D.; FLYNN, J. Toward the digital water age: Survey and case studies of Australian water utility smart-metering programs. Utilities Policy, v. 32, p. 29–37, 2015. https://doi.org/10.1016/j.jup.2014.12.006
BEAL, C. D.; GURUNG, T. R.; STEWART, R. A. Modelling the impacts of water efficient technologies on energy intensive water systems in remote and isolated communities. Clean Technologies and Environmental Policy, v. 18, n. 6, p. 1713–1723, 2016. https://doi.org/10.1007/s10098-016-1241-9
BEGIER, B. Effective cooperation with energy consumers: An example of an ethical approach to introduce an innovative solution. Journal of Information, Communication and Ethics in Society, v. 12, n. 2, p. 107–121, 2014. https://doi.org/10.1108/JICES-07-2013-0021
BERTOLDO, R.; POUMADÈRE, M.; RODRIGUES JR, L. C. When meters start to talk: The public’s encounter with smart meters in France. Energy Research and Social Science, v. 9, p. 146–156, 2015. https://doi.org/10.1016/j.erss.2015.08.014
BIGERNA, S. et al. A new unified approach to evaluate economic acceptance towards main green technologies using the meta-analysis. Journal of Cleaner Production, v. 167, p. 1251–1262, 2018. https://doi.org/10.1016/j.jclepro.2017.07.188
BOAIT, P. J. et al. Making legacy thermal storage heating fit for the smart grid. Energy and Buildings, v. 138, p. 630–640, 2017. https://doi.org/10.1016/j.enbuild.2016.12.053
BOOYSEN, M. J.; VISSER, M.; BURGER, R. Temporal case study of household behavioural response to Cape Town’s “Day Zero” using smart meter data. Water Research, v. 149, p. 414–420, 2019. https://doi.org/10.1016/j.watres.2018.11.035
BOUDET, H. S. Public perceptions of and responses to new energy technologies. Nature Energy, v. 4, n. 6, p. 446–455, 2019. https://doi.org/10.1038/s41560-019-0399-x
BOYLE, T. et al. Intelligent metering for urban water: A review. Water, v. 5, n. 3, p. 1052–1081, 2013. https://doi.org/10.3390/w5031052
BROWN, C. J.; MARKUSSON, N. The responses of older adults to smart energy monitors. Energy Policy, v. 130, p. 218–226, 2019. https://doi.org/10.1016/j.enpol.2019.03.063
BUCHANAN, K. et al. The British public’s perception of the UK smart metering initiative: Threats and opportunities. Energy Policy, v. 91, p. 87–97, 2016. https://doi.org/10.1016/j.enpol.2016.01.003
BUCHANAN, K.; RUSSO, R.; ANDERSON, B. The question of energy reduction: The problem(s) with feedback. Energy Policy, v. 77, p. 89–96, 2015. https://doi.org/10.1016/j.enpol.2014.12.008
BUGDEN, D.; STEDMAN, R. A synthetic view of acceptance and engagement with smart meters in the United States. Energy Research and Social Science, v. 47, n. January 2019, p. 137–145, 2019. https://doi.org/10.1016/j.erss.2018.08.025
BURCHELL, K.; RETTIE, R.; ROBERTS, T. C. Householder engagement with energy consumption feedback: The role of community action and communications. Energy Policy, v. 88, p. 178–186, 2016. https://doi.org/10.1016/j.enpol.2015.10.019
BURYK, S. et al. Investigating preferences for dynamic electricity tariffs: The effect of environmental and system benefit disclosure. Energy Policy, v. 80, p. 190–195, 2015. https://doi.org/10.1016/j.enpol.2015.01.030
CAHN, A.; KATZ, D.; GHERMANDI, A. Analyzing Water Customer Preferences for Online Feedback Technologies in Israel: A Prototype Study. Journal of Water Resources Planning and Management, v. 146, n. 4, p. 06020002, 2020. https://doi.org/10.1061/(ASCE)WR.1943-5452.0001179
CAMPILLO, J. et al. Is real-time electricity pricing suitable for residential users without demand-side management? Energy, v. 109, p. 310–325, 2016. https://doi.org/10.1016/j.energy.2016.04.105
CHABÉ-FERRET, S. et al. Can we nudge farmers into saving water? Evidence from a randomised experiment. European Review of Agricultural Economics, v. 46, n. 3, p. 393–416, 2019. https://doi.org/10.1093/erae/jbz022
CHAWLA, Y.; KOWALSKA-PYZALSKA, A. Public Awareness and Consumer Acceptance of Smart Meters among Polish Social Media Users. Energies, v. 12, n. 14, p. 2759, 2019. https://doi.org/10.3390/en12142759
CHAWLA, Y.; KOWALSKA-PYZALSKA, A.; ORALHAN, B. Attitudes and opinions of social media users towards smart meters’ rollout in Turkey. Energies, v. 13, n. 3, p. 732, 2020. https://doi.org/10.3390/en13030732
CHAWLA, Y.; KOWALSKA-PYZALSKA, A.; SILVEIRA, P. D. Marketing and communications channels for diffusion of electricity smart meters in Portugal. Telematics and Informatics, v. 50, p. 101385, 2020. https://doi.org/10.1016/j.tele.2020.101385
CHAWLA, Y.; KOWALSKA-PYZALSKA, A.; WIDAYAT, W. Consumer Willingness and Acceptance of Smart Meters in Indonesia. Resources, v. 8, n. 4, p. 177, 2019. https://doi.org/10.3390/resources8040177
CHEN, C.; XU, X.; ARPAN, L. Between the technology acceptance model and sustainable energy technology acceptance model: Investigating smart meter acceptance in the United States. Energy Research and Social Science, v. 25, p. 93–104, 2017. https://doi.org/10.1016/j.erss.2016.12.011
CHEN, K.-Y.; YEH, C.-F. Factors affecting adoption of smart meters in the post-Fukushima era in Taiwan: an extended protection motivation theory perspective. Behaviour and Information Technology, v. 36, n. 9, p. 955–969, 2017. https://doi.org/10.1080/0144929X.2017.1317363
CHEN, V. L.; DELMAS, M. A.; KAISER, W. J. Real-time, appliance-level electricity use feedback system: How to engage users? Energy and Buildings, v. 70, p. 455–462, 2014. https://doi.org/10.1016/j.enbuild.2013.11.069
CHOI, D. G. et al. Why Have Voluntary Time-of-Use Tariffs Fallen Short in the Residential Sector? Production and Operations Management, v. 29, n. 3, p. 617–642, 2020. https://doi.org/10.1111/poms.13126
CHOU, J.-S. et al. Cross-country review of smart grid adoption in residential buildings. Renewable and Sustainable Energy Reviews, v. 48, p. 192–213, 2015. https://doi.org/10.1016/j.rser.2015.03.055
CHOU, J.-S.; YUTAMI, I. G. A. N. Smart meter adoption and deployment strategy for residential buildings in Indonesia. Applied Energy, v. 128, p. 336–349, 2014. https://doi.org/10.1016/j.apenergy.2014.04.083
DARBY, S. Smart metering: what potential for householder engagement? Building Research and Information, v. 38, n. 5, p. 442–457, 2010. https://doi.org/10.1080/09613218.2010.492660
DAVIES, K. et al. Water-saving impacts of Smart Meter technology: An empirical 5 year, whole-of-community study in Sydney, Australia. Water Resources Research, v. 50, n. 9, p. 7348–7358, set. 2014. https://doi.org/10.1002/2014WR015812
DAVIS, F. D.; BAGOZZI, R. P.; WARSHAW, P. R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, v. 35, n. 8, p. 982–1003, 1989. https://doi.org/10.1287/mnsc.35.8.982
DEGEN, H.; MOSTASHARI, A.; MAURER, M. A sociotechnical systems model for smart-grid adoption in mid-sized urban environments. International Journal of Energy Technology and Policy, v. 10, n. 1, p. 1–20, 2014. https://doi.org/10.1504/IJETP.2014.065034
DÜŞTEGÖR, D. et al. A smarter electricity grid for the Eastern Province of Saudi Arabia: Perceptions and policy implications. Utilities Policy, v. 50, p. 26–39, 2018. https://doi.org/10.1016/j.jup.2017.09.009
DYSON, M. E. H. et al. Using smart meter data to estimate demand response potential, with application to solar energy integration. Energy Policy, v. 73, p. 607–619, 2014. https://doi.org/10.1016/j.enpol.2014.05.053
ELLABBAN, O.; ABU-RUB, H. Smart grid customers’ acceptance and engagement: An overview. Renewable and Sustainable Energy Reviews, v. 65, p. 1285–1298, 2016. https://doi.org/10.1016/j.rser.2016.06.021
ESPLUGA, J. et al. How to address citizens’ practices and policies on sustainability? A consultative tool for brokering policy-related knowledge between the worlds of policymaking and everyday citizens’ life. Evidence and Policy, v. 12, n. 3, p. 381–404, 2016. https://doi.org/10.1332/174426416X14738559545991
EUROPEAN UNION. Directive of 2009/72/EC of the European Parliament and of the Council of 13 July 2009 Concerning Common Rules for the Internal Market in Electricity and Repealing Directive 2003/54/EC. Official Journal of the European Union, v. L211, n. August, p. L 211/55-L 211/93, 2009. Disponível em: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:211:0055:0093:EN:PDF.
FARUQUI, A.; HARRIS, D.; HLEDIK, R. Unlocking the €53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU’s smart grid investment. Energy Policy, v. 38, n. 10, p. 6222–6231, 2010. https://doi.org/10.1016/j.enpol.2010.06.010
FENSEL, A. et al. SESAME-S: Semantic smart home system for energy efficiency. Informatik-Spektrum, v. 36, n. 1, p. 46–57, 2013. https://doi.org/10.1007/s00287-012-0665-9
FENSEL, A.; KUMAR, V.; TOMIC, S. D. K. End-user interfaces for energy-efficient semantically enabled smart homes. Energy Efficiency, v. 7, n. 4, p. 655–675, 2014. https://doi.org/10.1007/s12053-013-9246-2
FETTERMANN, D. C. et al. Configuration of a smart meter for Brazilian customers. Energy Policy, v. 139, p. 111309, 2020a. https://doi.org/10.1016/j.enpol.2020.111309
FETTERMANN, D. C. et al. Getting smarter about household energy: the who and what of demand for smart meters. Building Research and Information, 2020b. https://doi.org/10.1080/09613218.2020.1807896
GAO, X. et al. Systematic review on the implementation methodologies of inherent safety in chemical process. Journal of Loss Prevention in the Process Industries, v. 65, p. 104092, 2020. https://doi.org/10.1016/j.jlp.2020.104092
GAO, Y.; FOGGO, B.; YU, N. A Physically Inspired Data-Driven Model for Electricity Theft Detection With Smart Meter Data. IEEE Transactions on Industrial Informatics, v. 15, n. 9, p. 5076–5088, 2019. https://doi.org/10.1109/TII.2019.2898171
GARRAB, A.; BOUALLEGUE, A.; BOUALLEGUE, R. An agent based fuzzy control for smart home energy management in smart grid environment. International Journal of Renewable Energy Research, v. 7, n. 2, p. 599–612, 2017.
GERPOTT, T. J.; PAUKERT, M. Determinants of willingness to pay for smart meters: An empirical analysis of household customers in Germany. Energy Policy, v. 61, p. 483–495, 2013. https://doi.org/10.1016/j.enpol.2013.06.012
GIACOMIN, J.; BERTOLA, D. Human emotional response to energy visualisations. International Journal of Industrial Ergonomics, v. 42, n. 6, p. 542–552, 2012. https://doi.org/10.1016/j.ergon.2012.07.006
GIEST, S. Making energy personal: Policy coordination challenges in UK smart meter implementation. Journal of Public Policy, v. 40, n. 4, p. 553–572, 2019. https://doi.org/10.1017/S0143814X19000163
GRANDCLÉMENT, C.; NADAÏ, A. Devising the consumer of the competitive electricity market: the mundane meter, the unbundling doctrine, and the re-bundling of choice. Journal of Cultural Economy, v. 11, n. 5, p. 440–457, 2018. https://doi.org/10.1080/17530350.2018.1488269
GUERREIRO, S. et al. Making energy visible: sociopsychological aspects associated with the use of smart meters. Energy Efficiency, v. 8, n. 6, p. 1149–1167, 2015. https://doi.org/10.1007/s12053-015-9344-4
GUO, P.; LAM, J. C. K.; LI, V. O. K. Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach. Applied Energy, v. 235, p. 900–913, 2019. https://doi.org/10.1016/j.apenergy.2018.11.014
HALL, N. L.; JEANNERET, T. D.; RAI, A. Cost-reflective electricity pricing: Consumer preferences and perceptions. Energy Policy, v. 95, p. 62–72, 2016. https://doi.org/10.1016/j.enpol.2016.04.042
HARTWAY, R.; PRICE, S.; WOO, C. K. Smart meter, customer choice and profitable time-of-use rate option. Energy, v. 24, n. 10, p. 895–903, 1999. https://doi.org/10.1016/S0360-5442(99)00040-7
HESS, D. J. Smart meters and public acceptance: Comparative analysis and governance implications. Health, Risk and Society, v. 16, n. 3, p. 243–258, 2014. https://doi.org/10.1080/13698575.2014.911821
HESS, D. J.; COLEY, J. S. Wireless smart meters and public acceptance: The environment, limited choices, and precautionary politics. Public Understanding of Science, v. 23, n. 6, p. 688–702, 2014. https://doi.org/10.1177/0963662512464936
HIELSCHER, S.; SOVACOOL, B. K. Contested smart and low-carbon energy futures: Media discourses of smart meters in the United Kingdom. Journal of Cleaner Production, v. 195, p. 978–990, 2018. https://doi.org/10.1016/j.jclepro.2018.05.227
HMIELOWSKI, J. D. et al. The social dimensions of smart meters in the United States: Demographics, privacy, and technology readiness. Energy Research and Social Science, v. 55, p. 189–197, 2019. https://doi.org/10.1016/j.erss.2019.05.003
HOSSAIN, M. S. et al. Role of smart grid in renewable energy: An overview. Renewable and Sustainable Energy Reviews, v. 60, p. 1168–1184, 2016. https://doi.org/10.1016/j.rser.2015.09.098
HU, C. et al. CP_ABSC: An attribute-based signcryption scheme to secure multicast communications in smart grids. Mathematical Foundations of Computing, v. 1, n. 1, p. 77–100, 2018.
HUIJTS, N. M. A.; MOLIN, E. J. E.; STEG, L. Psychological factors influencing sustainable energy technology acceptance: A review-based comprehensive framework. Renewable and Sustainable Energy Reviews, v. 16, n. 1, p. 525–531, 2012. https://doi.org/10.1016/j.rser.2011.08.018
ISLAM, S. N.; BAIG, Z.; ZEADALLY, S. Physical Layer Security for the Smart Grid: Vulnerabilities, Threats, and Countermeasures. IEEE Transactions on Industrial Informatics, v. 15, n. 12, p. 6522–6530, 2019. https://doi.org/10.1109/TII.2019.2931436
JARAMILLO, N. C.; CARDONA, C. J. F.; HENAO, J. D. V. Smart meters adoption: recent advances and future trends. DYNA, v. 81, n. 183, p. 221–230, 24 fev. 2014. Disponível em: http://www.scopus.com/inward/record.url?eid=2-s2.0-84894593003&partnerID=MN8TOARS. https://doi.org/10.15446/dyna.v81n183.38148
JEGEN, M.; PHILION, X. D. Power and smart meters: A political perspective on the social acceptance of energy projects. Canadian Public Administration, v. 60, n. 1, p. 68–88, 2017. https://doi.org/10.1111/capa.12202
KALLMAN, M. E.; FRICKEL, S. Power to the people: industrial transition movements and energy populism. Environmental Sociology, v. 5, n. 3, p. 255–268, 2019a. https://doi.org/10.1080/23251042.2018.1531497
KALLMAN, M. E.; FRICKEL, S. Nested logics and smart meter adoption: Institutional processes and organizational change in the diffusion of smart meters in the United States. Energy Research and Social Science, v. 57, n. November 2019, p. 101249, 2019b. https://doi.org/10.1016/j.erss.2019.101249
KAUFMANN, S.; KÜNZEL, K.; LOOCK, M. Customer value of smart metering: Explorative evidence from a choice-based conjoint study in Switzerland. Energy Policy, v. 53, p. 229–239, 2013. https://doi.org/10.1016/j.enpol.2012.10.072
KIGUCHI, Y. et al. Predicting intra-day load profiles under time-of-use tariffs using smart meter data. Energy, v. 173, p. 959–970, 2019. https://doi.org/10.1016/j.energy.2019.01.037
KING, N. J.; JESSEN, P. W. Smart metering systems and data sharing: Why getting a smart meter should also mean getting strong information privacy controls to manage data sharing. International Journal of Law and Information Technology, v. 22, n. 3, p. 215–253, 2014. https://doi.org/10.1093/ijlit/eau001
KNYRIM, R.; TRIEB, G. Smart metering under EU data protection law. International Data Privacy Law, v. 1, n. 2, p. 121–128, 2011. https://doi.org/10.1093/idpl/ipr004
KOWALSKA-PYZALSKA, A.; BYRKA, K. Determinants of the willingness to energy monitoring by residential consumers: A case study in the city of Wroclaw in Poland. Energies, v. 12, n. 5, p. 907, 2019. https://doi.org/10.3390/en12050907
KRISHNAMURTI, T. et al. Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters. Energy Policy, v. 41, p. 790–797, 2012. https://doi.org/10.1016/j.enpol.2011.11.047
KUMAR, A. Beyond technical smartness: Rethinking the development and implementation of sociotechnical smart grids in India. Energy Research and Social Science, v. 49, n. March 2019, p. 158–168, 2019. https://doi.org/10.1016/j.erss.2018.10.026
LEE, S.-H.; CHOI, K.-W. A study of smart meter security using Gaussian mixture model. Information, v. 20, n. 6, p. 3921–3926, 2017.
LIBERATI, A. et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine, v. 6, n. 7, p. e1000100, 2009. https://doi.org/10.1371/journal.pmed.1000100
LIU, A.; MUKHEIBIR, P. Digital metering feedback and changes in water consumption – A review. Resources, Conservation and Recycling, v. 134, p. 136–148, 2018. https://doi.org/10.1016/j.resconrec.2018.03.010
LOSSIN, F.; LODER, A.; STAAKE, T. Energy informatics for behavioral change: Increasing the participation rate in an IT-based energy conservation campaign using social norms and incentives. Computer Science - Research and Development, v. 31, n. 3, p. 149–155, 2016. https://doi.org/10.1007/s00450-014-0295-3
MAH, D. N. et al. Understanding undergraduate students’ perceptions of dynamic pricing policies: An exploratory study of two pilot deliberative pollings (DPs) in Guangzhou, China and Kyoto, Japan. Journal of Cleaner Production, v. 202, p. 160–173, 2018. https://doi.org/10.1016/j.jclepro.2018.07.255
MARCH, H. et al. Household Smart Water Metering in Spain: Insights from the Experience of Remote Meter Reading in Alicante. Sustainability, v. 9, n. 4, p. 582, 11 abr. 2017. Disponível em: http://www.mdpi.com/2071-1050/9/4/582. https://doi.org/10.3390/su9040582
MARQUES, V.; BENTO, N.; COSTA, P. M. The “Smart Paradox”: Stimulate the deployment of smart grids with effective regulatory instruments. Energy, v. 69, p. 96–103, 2014. https://doi.org/10.1016/j.energy.2014.01.007
MATSCHOSS, K.; KAHMA, N.; HEISKANEN, E. Pioneering customers as change agents for new energy efficiency services—an empirical study in the Finnish electricity markets. Energy Efficiency, v. 8, n. 5, p. 827–843, 2015. https://doi.org/10.1007/s12053-014-9300-8
MELVILLE, E. et al. The electric commons: A qualitative study of community accountability. Energy Policy, v. 106, p. 12–21, 2017. https://doi.org/10.1016/j.enpol.2017.03.035
MEYERS, R. J.; WILLIAMS, E. D.; MATTHEWS, H. S. Scoping the potential of monitoring and control technologies to reduce energy use in homes. Energy and Buildings, v. 42, n. 5, p. 563–569, 2010. https://doi.org/10.1016/j.enbuild.2009.10.026
MICHAELS, L.; PARAG, Y. Motivations and barriers to integrating ‘prosuming’ services into the future decentralized electricity grid: Findings from Israel. Energy Research and Social Science, v. 21, p. 70–83, 2016. https://doi.org/10.1016/j.erss.2016.06.023
MOGLES, N. et al. How smart do smart meters need to be? Building and Environment, v. 125, p. 439–450, 2017. https://doi.org/10.1016/j.buildenv.2017.09.008
MONTGINOUL, M.; VESTIER, A. Smart metering: A water-saving solution? Consider communication strategies and user perceptions first. Evidence from a French case study. Environmental Modelling and Software, v. 104, p. 188–198, 2018. https://doi.org/10.1016/j.envsoft.2018.02.006
MORENO-BLANCO, D. et al. Technologies for monitoring lifestyle habits related to brain health: A systematic review. Sensors, v. 19, p. 4183, 2019. https://doi.org/10.3390/s19194183
MOSER, C. The role of perceived control over appliances in the acceptance of electricity load-shifting programmes. Energy Efficiency, v. 10, n. 5, p. 1115–1127, 2017. https://doi.org/10.1007/s12053-017-9508-5
MURTAGH, N. et al. Individual energy use and feedback in an office setting: A field trial. Energy Policy, v. 62, p. 717–728, 2013. https://doi.org/10.1016/j.enpol.2013.07.090
NACHREINER, M. et al. An analysis of smart metering information systems: A psychological model of self-regulated behavioural change. Energy Research and Social Science, v. 9, p. 85–97, 2015. https://doi.org/10.1016/j.erss.2015.08.016
NIKOLAIDIS, P.; CHATZIS, S.; POULLIKKAS, A. Life cycle cost analysis of electricity storage facilities in flexible power systems. International Journal of Sustainable Energy, v. 38, n. 8, p. 752–772, 2019. https://doi.org/10.1080/14786451.2019.1579815
NOVAK, J. et al. Integrating behavioural change and gamified incentive modelling for stimulating water saving. Environmental Modelling and Software, v. 102, p. 120–137, 2018. https://doi.org/10.1016/j.envsoft.2017.11.038
OLMOS, L. et al. Energy efficiency actions related to the rollout of smart meters for small consumers, application to the Austrian system. Energy, v. 36, n. 7, p. 4396–4409, 2011. https://doi.org/10.1016/j.energy.2011.04.003
OLTRA, C. et al. A qualitative study of users’ engagement with real-time feedback from in-house energy consumption displays. Energy Policy, v. 61, p. 788–792, 2013. https://doi.org/10.1016/j.enpol.2013.06.127
PAIHO, S. et al. Increasing flexibility of Finnish energy systems—A review of potential technologies and means. Sustainable Cities and Society, v. 43, p. 509–523, 2018. https://doi.org/10.1016/j.scs.2018.09.015
PARK, C.-K.; KIM, H.-J.; KIM, Y.-S. A study of factors enhancing smart grid consumer engagement. Energy Policy, v. 72, p. 211–218, 2014. https://doi.org/10.1016/j.enpol.2014.03.017
PETERS, D.; AXSEN, J.; MALLETT, A. The role of environmental framing in socio-political acceptance of smart grid: The case of British Columbia, Canada. Renewable and Sustainable Energy Reviews, v. 82, p. 1939–1951, 2018. https://doi.org/10.1016/j.rser.2017.06.020
RAIMI, K. T.; CARRICO, A. R. Understanding and beliefs about smart energy technology. Energy Research and Social Science, v. 12, p. 68–74, 2016. https://doi.org/10.1016/j.erss.2015.12.018
RAUSSER, G.; STRIELKOWSKI, W.; ŠTREIMIKIENĖ, D. Smart meters and household electricity consumption: A case study in Ireland. Energy and Environment, v. 29, n. 1, p. 131–146, 2018. https://doi.org/10.1177/0958305X17741385
REN21. Renewables 2020 Global Status Report. Paris: REN21 Secretariat, 2020.
RIXEN, M.; WEIGAND, J. Agent-based simulation of consumer demand for smart metering tariffs. International Journal of Innovation and Technology Management, v. 10, n. 5, p. 1340020, 2013. https://doi.org/10.1142/S0219877013400208
RIXEN, M.; WEIGAND, J. Agent-based simulation of policy induced diffusion of smart meters. Technological Forecasting and Social Change, v. 85, p. 153–167, 2014. https://doi.org/10.1016/j.techfore.2013.08.011
RYGHAUG, M.; SKJØLSVOLD, T. M.; HEIDENREICH, S. Creating energy citizenship through material participation. Social Studies of Science, v. 48, n. 2, p. 283–303, 2018. https://doi.org/10.1177/0306312718770286
SAREEN, S.; ROMMETVEIT, K. Smart gridlock? Challenging hegemonic framings of mitigation solutions and scalability. Environmental Research Letters, v. 14, n. 7, p. 075004, 2019. https://doi.org/10.1088/1748-9326/ab21e6
SCHOPFER, S.; TIEFENBECK, V.; STAAKE, T. Economic assessment of photovoltaic battery systems based on household load profiles. Applied Energy, v. 223, p. 229–248, 2018. https://doi.org/10.1016/j.apenergy.2018.03.185
SHIM, D.; KIM, S. W.; ALTMANN, J. Strategic management of residential electric services in the competitive market: Demand-oriented perspective. Energy and Environment, v. 29, n. 1, p. 49–66, 2018. https://doi.org/10.1177/0958305X17740234
SILVAST, A. et al. Who “uses” smart grids? The evolving nature of user representations in layered infrastructures. Sustainability, v. 10, n. 10, p. 3738, 2018. https://doi.org/10.3390/su10103738
SØNDERLUND, A. L. et al. Effectiveness of smart meter-based consumption feedback in curbing household water use: Knowns and unknowns. Journal of Water Resources Planning and Management, v. 142, n. 12, p. 04016060, 2016. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000703
STEWART, R. A. et al. Showering behavioural response to alarming visual display monitors: Longitudinal mixed method study. Behaviour and Information Technology, v. 32, n. 7, p. 695–711, 2013. https://doi.org/10.1080/0144929X.2011.577195
SUNIKKA-BLANK, M. et al. Improving Energy Efficiency of Social Housing Areas: A Case Study of a Retrofit Achieving an “A” Energy Performance Rating in the UK. European Planning Studies, v. 20, n. 1, p. 131–145, 2012. https://doi.org/10.1080/09654313.2011.638494
THRONDSEN, W. What do experts talk about when they talk about users? Expectations and imagined users in the smart grid. Energy Efficiency, v. 10, n. 2, p. 283–297, 3 abr. 2017. Disponível em: http://link.springer.com/10.1007/s12053-016-9456-5. https://doi.org/10.1007/s12053-016-9456-5
THRONDSEN, W.; RYGHAUG, M. Material participation and the smart grid: Exploring different modes of articulation. Energy Research and Social Science, v. 9, p. 157–165, 2015. https://doi.org/10.1016/j.erss.2015.08.012
TORRITI, J. People or machines? Assessing the impacts of smart meters and load controllers in Italian office spaces. Energy for Sustainable Development, v. 20, p. 86–91, 2014. https://doi.org/10.1016/j.esd.2014.01.006
VAN DE KAA, G. et al. How to Weigh Values in Value Sensitive Design: A Best Worst Method Approach for the Case of Smart Metering. Science and Engineering Ethics, v. 26, n. 1, p. 475–494, 2020. https://doi.org/10.1007/s11948-019-00105-3
VASSILEVA, I.; CAMPILLO, J. Consumers’ perspective on full-scale adoption of smart meters: A case study in Västerås, Sweden. Resources, v. 5, n. 1, p. 3, 2016. https://doi.org/10.3390/resources5010003
VASSILEVA, I.; CAMPILLO, J.; SCHWEDE, S. Technology assessment of the two most relevant aspects for improving urban energy efficiency identified in six mid-sized European cities from case studies in Sweden. Applied Energy, v. 194, p. 808–818, 2017. https://doi.org/10.1016/j.apenergy.2016.07.097
WANG, S. et al. A randomized response model for privacy preserving smart metering. IEEE Transactions on Smart Grid, v. 3, n. 3, p. 1317–1324, 2012. https://doi.org/10.1109/TSG.2012.2192487
WARKENTIN, M.; GOEL, S.; MENARD, P. Shared Benefits and Information Privacy: What Determines Smart Meter Technology Adoption? Journal of the Association for Information Systems, v. 18, n. 11, p. 758–786, 2017. https://doi.org/10.17705/1jais.00474
WARREN, P. The potential of smart technologies and micro-generation in UK SMEs. Energies, v. 10, n. 7, p. 1050, 2017. https://doi.org/10.3390/en10071050
WATSON, S. Consuming water smartly: the significance of sociocultural differences to water-saving initiatives. Local Environment, v. 22, n. 10, p. 1237–1251, 2017. https://doi.org/10.1080/13549839.2017.1334143
WEBER, M.; ŽARKO, I. P. A regulatory view on smart city services. Sensors, v. 19, n. 2, p. 415, 2019. https://doi.org/10.3390/s19020415
WEMYSS, D. et al. Examining community-level collaborative vs. competitive approaches to enhance household electricity-saving behavior. Energy Efficiency, v. 11, p. 2057–2075, 2018. https://doi.org/10.1007/s12053-018-9691-z
WILSON, C.; HARGREAVES, T.; HAUXWELL-BALDWIN, R. Benefits and risks of smart home technologies. Energy Policy, v. 103, p. 72–83, 2017. https://doi.org/10.1016/j.enpol.2016.12.047
WOLISZ, H. et al. Feasibility and potential of thermal demand side management in residential buildings considering different developments in the German energy market. Energy Conversion and Management, v. 107, p. 86–95, 2016. https://doi.org/10.1016/j.enconman.2015.06.059
WUNDERLICH, P.; VEIT, D. J.; SARKER, S. Adoption of sustainable technologies: a mixed-methods study of German households. MIS Quarterly, v. 43, n. 2, p. 673–691, 2019. https://doi.org/10.25300/MISQ/2019/12112
YANG, B. et al. Smart metering and systems for low-energy households: challenges, issues and benefits. Advances in Building Energy Research, v. 13, n. 1, p. 80–100, 2019. https://doi.org/10.1080/17512549.2017.1354782
ZHOU, S.; BROWN, M. A. Smart meter deployment in Europe: A comparative case study on the impacts of national policy schemes. Journal of Cleaner Production, v. 144, p. 22–32, 2017. https://doi.org/10.1016/j.jclepro.2016.12.031
ZHOU, S.; MATISOFF, D. C. Advanced Metering Infrastructure Deployment in the United States: The Impact of Polycentric Governance and Contextual Changes. Review of Policy Research, v. 33, n. 6, p. 646–665, 2016. https://doi.org/10.1111/ropr.12203
ZHOU, S.; NOONAN, D. S. Justice implications of clean energy policies and programs in the United States: A theoretical and empirical exploration. Sustainability, v. 11, n. 3, p. 807, 2019. https://doi.org/10.3390/su11030807
Publicado
Como Citar
Edição
Seção
Licença
A Revista se reserva no direito de efetuar, no artigo publicado, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua, respeitando, porém, o estilo dos autores.
A obra publicada é de inteira responsabilidade do(s) autor(es), cabendo à Revista Produção Online apenas a avaliação da obra, na qualidade de veículo de publicação científica. A Revista Produção Online não se responsabiliza por eventuais violações à Lei nº 9.610/1998, Lei de Direito Autoral.
A revista Produção Online permite que o autor detenha o copyright dos artigos aceitos para publicação, sem restrições.
Esta obra está licenciada sob uma Licença Creative Commons.