Modelo de previsão de demanda de ordens de manutenção emergenciais baseada em fatores climáticos em um sistema de distribuição de energia elétrica

Lucas Machado Basso, Jéssica de Assis Dornelles, Verônica Maurer Tabim, Vinícius Jaques Garcia

Resumo


A previsão da demanda de ordens de manutenção é fundamental para o planejamento dos recursos de mão-de-obra, materiais e infraestrutura necessários para atender aos chamados e garantir a disponibilidade do sistema de distribuição de energia elétrica. O objetivo deste estudo é desenvolver um modelo de previsão de demanda para ordens de manutenção emergencial em um sistema de distribuição de energia elétrica considerando fatores climáticos que possam afetar essa demanda. Este estudo apresenta uma pesquisa aplicada quanto a sua natureza, exploratória quanto aos seus objetivos e com abordagem quantitativa. O método de trabalho apresenta quatro etapas principais: (i) mineração dos dados das ordens de manutenção emergenciais em relação aos fatores climáticos; (ii) determinação do método de previsão de demanda adequado; (iii) elaboração de um modelo de previsão de demanda para as ordens de emergência considerando fatores climáticos; e (iv) validação do modelo de previsão da demanda a partir de dados coletados. Como resultado obteve-se o modelo de previsão de demanda de ordens de manutenção emergenciais baseado em fatores climáticos para um sistema de distribuição de energia elétrica. 


Palavras-chave


Previsão de demanda. Mineração de dados. Manutenção emergencial. Regressão múltipla. Distribuidora de energia elétrica.

Texto completo:

PDF ♪ÁUDIO♪

Referências


AHMED, T., VU, D. H., MUTTAQI, K.M., AGALGAONKAR, A.P. Load forecasting under changing climatic conditions for the city of Sydney, Australia. Energy, 2018. https://doi.org/10.1016/j.energy.2017.10.070

AHMED, T., MUTTAQI, K.M., AGALGAONKAR, A.P. Climate change impacts on electricity demand in the State of New Wales, Australia. Applied Energy, 2012. https://doi.org/10.1016/j.apenergy.2012.03.059

ANG, B.W, GOH, T.N., LIU, X.Q. Demanda residencial de eletricidade em Cingapura. Energy, 1992.

APADULA, F., BASSINI, A., ELLI, A., SCAPIN, S. Relationships between meteorological variables and monthly electricity demand. Applied Energy, 2012. https://doi.org/10.1016/j.apenergy.2012.03.053

BERTLING, L. ALLAN, R. ERIKSSON, R. A reliability-centered asset maintenance method for assessing the impact of maintenance in power distribution systems. IEEE Power System, 2005. https://doi.org/10.1109/TPWRS.2004.840433

BROWN, D.E. Introduction to Data Mining for Medical Informatics. Clinics in Laboratory Medicine, 2008. https://doi.org/10.1016/j.cll.2007.10.008

FROGER, A. GENDREAU, M. MENDOZA, J. E. PINSON, E. ROUSSEAU, L.M. Maintenance scheduling in the electricity industry: a literature Review. European Journal of Operational Research, 2016. https://doi.org/10.1016/j.ejor.2015.08.045

GHANI, I. M., AHMAD, S. Stepwise Multiple Regression Method to Forecast Fish Landing. In: INTERNATIONAL CONFERENCE ON MATHEMATICS EDUCATION RESEARCH, 2020. [Proceedings…]. 2010. https://doi.org/10.1016/j.sbspro.2010.12.076

GONZÁLEZ-ROMERA, E., JARAMILLO-MORÁN, M. A., CARMONA-FERNÁNDEZ, D. Monthly electic energy demand forecasting based on trend extration. IEEE Transactions on Power Systems, 2006. https://doi.org/10.1109/TPWRS.2006.883666

GORDAN, M. ISMAIL, Z. RAZAK, H. A. GHAEDI, K. IBRAHIM, Z. TAN, Z.X. GHAYEB, H.H. Data mining-based damage identification of a slab-on-girder bridge using inverse analysis. Measurement, 2020. https://doi.org/10.1016/j.measurement.2019.107175

GUJARATI, D.N.; PORTER, D.C. Econometria básica .5.ed. São Paulo: McGraw Hill Brasil, 2011.

HADI, F., HOMAYOON, K. New empirical model to evaluate groundwater flow into circular tunnel using multiple regression analysis. International Journal of Mining Science and Technology, 2017. https://doi.org/10.1109/59.331433

HAIDA, T., MUTO, S. Regression based peak load forecasting using a transformation technique. Power Systems. IEEE Transactions, 1994.

HANKE, J. E.; WICHERN, D. W.; REITSCH, A. G. Business forecasting. 7. ed. New York: Prentice Hall, 2001.

HARRISON, J. H. Introduction to the mining of clinical data. Clinics in Laboratory Medicine, 2008. https://doi.org/10.1016/j.cll.2007.10.001

HEKKENBERG, M., MOLL, H.C. AJM Schoot Uiterkamp. Dynamic temperature dependence patterns in future energy demand models in the context of climate change. Energy, 2009. https://doi.org/10.1016/j.energy.2009.07.037

HENLEY, A., PEIRSON, J. Não linearidades na demanda de eletricidade e temperatura: Métodos paramétricos versus não paramétricos. Boletim Oxford de Economia e Estatística, 1997.

INMET. Instituto Nacional de Meteorologia. Brasil, 2018.

JOHNSTON, J. Métodos econométricos. São Paulo: Atlas, 1977.

KIM, C.YONJOO, L. PARK, B. U. Cook’s distance in local polynomial regression. Statistics & Probability Letters, 2001. https://doi.org/10.1016/S0167-7152(01)00031-1

LIRA, S. A. Análise de correlação: abordagem teórica e de construção dos coeficientes com aplicações”. Curitiba, 2004. 196 p. Dissertação (Mestrado) - Setores de Ciências Exatas e de Tecnologia, UFPR.

LIU, J. KONG, X. ZHOU, X. WANG, L. ZHANG, D. LEE, I. XU, B. XIA, F. Data Mining and Information Retrieval in the 21st century: a bibliographic review. Computer Sciencie Review, 2019. https://doi.org/10.1016/j.cosrev.2019.100193

MARCONI, M.; LAKATOS, E. M. Fundamentos de metodologia científica. 7. ed. São Paulo: Atlas, 2010.

MATTOS, R. S. Tendências e raízes unitárias. Economia, Universidade Federal de Juiz de Fora, 2018.

MENNIS, J. GUO, D. Spatial data mining and geographic knowledge discovery: an Introductio. Computers. Environment and Urban Systems, 2009. https://doi.org/10.1016/j.compenvurbsys.2009.11.001

MIRASGEDIS, S., SARAFIDIS, Y., GEORGOPOULOU, E., KOTRONI, V., LAGOUVARDOS, K. Modeling framework for estimating impacts of climate change on electricity demand at regional level: Case of Greece. Energy Convers Manage, 2007. https://doi.org/10.1016/j.enconman.2006.10.022

NGUYEN, TUYET, T. A. CHOU, S. Y. Maintenance strategy selection for improving cost-effectiveness of offshore Wind systems. Energy Conversion and Management, 2018. https://doi.org/10.1016/j.enconman.2017.11.090

OLIVEIRA, M. O., MARZEC, D. P., BORDIN, G., BRETAS, A. S., BERNARDON, D. Climate Change Effect on Very Short-Term Eletric Load Forecasting. IEEE Trondheim PowerTech, 2011. https://doi.org/10.1109/PTC.2011.6019249

OLKIN, I. SAMPSON, A.R. Multivariate analysis: overview. International Encyclopedia of the Social & Behavioral Sciences, 2001. https://doi.org/10.1016/B0-08-043076-7/00472-1

PANG-NING, T. STEINBACH, M. KUMAR, V. Introduction to data mining. Boston: Pearson, 2006.

PESARAN, M.H.; ULLAH, A., YAMAGATA, T. A Bias-adjusted LM testo d error cross-section Independence. Econometrics Journal, 2008. https://doi.org/10.1111/j.1368-423X.2007.00227.x

RUTH, M., LIN, D.C. Regional energy demand and adaptations to climate change: methodology and application to the state of Maryland, USA. Política Energética, 2006. https://doi.org/10.1016/j.enpol.2005.04.016

SAILOR, D.J. Relacionando as cargas de eletricidade do setor residencial e comercial ao clima, avaliando as vulnerabilidades e vulnerabilidades do estado. Energy, 2000.

SALOMÃO S., QIN D., M. MANNING, CHEN Z., MARQUÊS M., AVERYT KB et al. Mudança climática 2007: a base da ciência física. Grupo de Trabalho I ao Quarto Relatório de Avaliação do Painel Intergovernamental sobre Mudança do Clima. Cambridge, UK, Nova Iorque, EUA, Cambridge University Press; 2007.

SINGH, A. K., IBRAHEEM, I., KHATOON, S., MUAZZAM, M., CHATUVERVEDI, D. Load forecasting techniques and methodologies: a review. Power, Control and Embedded Systems. In: INTERNATIONAL CONFERENCE. [Anais…], 2012. https://doi.org/10.1109/ICPCES.2012.6508132

SITTITHUMWAT, A. SOUDI, F. TOMSOVIC, K. Optimal allocation of distribution maintenance resources with limited information. Eletric Power Systems Research, 2004. https://doi.org/10.1016/j.epsr.2003.07.001

SON, H., KIM, C. Short-term forecasting of electricity demand for the residential sector using weather and social variables. Resources. Conservation and Recycling, 2017. https://doi.org/10.1016/j.resconrec.2016.01.016

TAN, P-N. Introduction data mining. Omstructor’s Solution Manual Pearson Education India, 2007.

VU, D. H., MUTTAQI, K. M., AGALGAONKAR, A. P. A variance inflation fator and backward elimination based robust regression model for forcasting monthly electricity demand using climatic variables. Applied Energy, 2015. https://doi.org/10.1016/j.apenergy.2014.12.011




DOI: https://doi.org/10.14488/1676-1901.v21i1.4163

Métricas do artigo

Carregando Métricas ...

Metrics powered by PLOS ALM


R. Eletr. de Eng. de Produção e Correlatas - ISSN 1676-1901 Creative Commons License
Esta obra está licenciada sob uma Licença Creative Commons. © 2002 / Todos os direitos reservados Associação Brasileira de Engenharia de Produção (ABEPRO) Universidade Federal de Santa Catarina (UFSC).                           Contato: producaoonline@gmail.com