O efeito da consciência ambiental na intenção de uso de smart homes

Autores

  • Débora Rosa Nascimento Universidade Federal de Santa Catarina, Florianópolis - SC
  • Diego de Castro Fettermann Universidade Federal de Santa Catarina (UFSC) Departamento de Engenharia de Produção e Sistemas (EPS)

DOI:

https://doi.org/10.14488/1676-1901.v20i2.4011

Palavras-chave:

Smart home. Consciência ambiental. Usuário. SEM-PLS.

Resumo

A smart home permite que os usuários monitorem, controlem e gerenciem uma ampla variedade de itens de sua casa de forma remota e inteligente. A literatura sobre o tema tem se concentrado na compreensão da tecnologia, sua utilidade e funcionalidade, sendo que a compreensão sobre o impacto ambiental de sua aplicação ainda é pouco explorada. A partir disso, este estudo tem como objetivo mensurar o efeito da consciência ambiental na intenção de uso dos potenciais usuários de uma smart home. O modelo proposto neste estudo incorpora além da consciência ambiental, outros fatores relacionados aos usuários, tais como a percepção de utilidade e dos riscos/segurança, para mensurar a intenção de uso da smart home. Para o teste do modelo proposto foi realizada uma survey com 74 potenciais usuários na região de Florianópolis-SC. A análise de dados foi realizada utilizando-se a abordagem Structural Equation Modelling - PLS. Apesar da consciência ambiental ser mencionada pela literatura como sendo um dos importantes motivadores da utilização das smart homes, seu efeito sobre a intenção de uso não se apresentou significativo na amostra analisada. Os resultados indicam que estratégias baseadas no estímulo à conservação do meio ambiente tendem a não ser efetivas para a implementação de residências inteligentes na região estudada.

Downloads

Não há dados estatísticos.

Biografia do Autor

Débora Rosa Nascimento, Universidade Federal de Santa Catarina, Florianópolis - SC

Professora do IFMG no Campus de Governador Valadares - MG. Doutoranda do Programa de Pós Graduação em Engenharia de Produção da UFSC.

Diego de Castro Fettermann, Universidade Federal de Santa Catarina (UFSC) Departamento de Engenharia de Produção e Sistemas (EPS)

Doutor em Engenharia de Produção com ênfase em Sistemas da Qualidade pela UFRGS. Professor Adjunto do curso de Engenharia de Produção e Sistemas da UFSC e possui experiência nos temas de Projeto de Produto, Customização em Massa e Gestão de Projetos.

Referências

ALFARIS, F.; JUAIDI, A.; MANZANO-AGUGLIARO, F. Intelligent homes’ technologies to optimize the energy performance for the net zero energy home. Energy and Buildings, v. 153, p. 262–274, 2017. https://doi.org/10.1016/j.enbuild.2017.07.089

ALMEIDA, T. D.; FETTERMANN, D. C. Consumo residencial: uma proposta de modelo de negócio para medidores inteligentes. Revista Produção Online, v. 19, n. 3, p. 1094-1117, 2019. https://doi.org/10.14488/1676-1901.v19i3.3617

BALTA-OZKAN, N.; DAVIDSON, R.; BICKET, M.; WHITMARSH, L. Social barriers to the adoption of smart homes. Energy Policy, v. 63, p. 363-374, 2013. https://doi.org/10.1016/j.enpol.2013.08.043

BASTIDA, L.; COHEN, J. J.; KOLLMANN, A.; MOYA, A.; REICHL, J. Exploring the role of ICT on household behavioural energy efficiency to mitigate global warming. Renewable and Sustainable Energy Reviews, v. 103, p. 455–462, 2019. https://doi.org/10.1016/j.rser.2019.01.004

BATALLA, J. M.; VASILAKOS, A.; GAJEWSKI, M. Secure Smart Homes: Opportunities and challenges. ACM Computing Surveys, v. 50, n.5, 2017. https://doi.org/10.1145/3122816

BAUDIER, P.; AMMI, C.; DEBOEUF-ROUCHON, M. Smart home: Highly-educated students' acceptance. Technological Forecasting and Social Change, 2018. https://doi.org/10.1016/j.techfore.2018.06.043

BECKEL, C.; SADOMORI, L.; STAAKE, T.; SANTINI, S. Revealing household characteristics from smart meter data. Energy, v. 78, p. 397-410, 2014. https://doi.org/10.1016/j.energy.2014.10.025

BELTON, C. A., LUNN, P. D. Smart choices? An experimental study of smart meters and time-of-use tariffs in Ireland. Energy Policy, 140, 111243. 2020. https://doi.org/10.1016/j.enpol.2020.111243

CARRILLO-HERMOSILLA, J.; DEL RÍO, P.; KÖNNÖLÄC, T. Diversity of eco-innovations: Reflections from selected case studies. Journal of Cleaner Production, v. 18, p. 1073 - 1083, 2010. https://doi.org/10.1016/j.jclepro.2010.02.014

CHAN, M.; ESTÈVE, D.; ESCRIBA, C.; CAMPO, E. A review of smart-homes - present states and future challenges. Computer and methods and biomedicine, v. 91, n. 1, p. 55-81, 2008. https://doi.org/10.1016/j.cmpb.2008.02.001

DANGELICO, R.M.; PONTRANDOLFO, P. From green product definitions and classifications to the green option matrix. Journal Cleaner Production, v. 18, p. 1608–1628, 2010. https://doi.org/10.1016/j.jclepro.2010.07.007

FETTERMANN, D. C., CAVALCANTE, C. G. S., ALMEIDA, T. D. D., TORTORELLA, G. L.. How does Industry 4.0 contribute to operations management?. Journal of Industrial and Production Engineering, v. 35, n 4, p. 255-268, 2018. https://doi.org/10.1080/21681015.2018.1462863

FETTERMANN, D. C., CAVALCANTE, C. G. S., AYALA, N. F., AVALONE, M. C. Configuration of a smart meter for Brazilian customers. Energy Policy, 139, 111309, 2020. https://doi.org/10.1016/j.enpol.2020.111309

FRONDEL, M., HORBACH, J., RENNINGS, K. End‐of‐pipe or cleaner production? An empirical comparison of environmental innovation decisions across OECD countries. Business Strategy and the Environment, v. 16, n. 8, p. 571–584, 2007. https://doi.org/10.1002/bse.496

GADENNE, D.; SHARMA, B.; KERR, D.; SMITH, T. The influence of consumers' environmental beliefs and attitudes on energy saving behaviours. Energy Policy, v. 39, n. 12, p. 7684-7694, 2011. https://doi.org/10.1016/j.enpol.2011.09.002

GERPOTT, T. J., PAUKERT, M. Determinants of willingness to pay for smart meters: An empirical analysis of household customers in Germany. Energy Policy, 61, p. 483-495, 2013. https://doi.org/10.1016/j.enpol.2013.06.012

GHAFFARIANHOSEINI, A.; DAHLAN, N. D.; BERARDI, U.; GHAFFARIANHOSEINI, A.; MAKAREMI, N. The essence of future smart houses: from embedding ICT to adapting to sustainability principles. Renewable and Sustainable Energy Reviews, v. 24, p. 593-607, 2013. https://doi.org/10.1016/j.rser.2013.02.032

HAIR Jr J. F.; HULT, G. T. M.; RINGLE, C.; SARSTEDT, M. A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications, 2016.

HAIR Jr J.F.; ANDERSON, R.E., TATHAM, R.L., BLACK, W.C. Multivariate data analysis. 5th ed. New Jersey: Prentice Hall, 2005.

HARTMANN, P.; APAOLAZA-IBÁÑEZ, V. Consumer attitude and purchase intention toward green energy brands: The roles of psychological benefits and environmental concern. Journal of Business Research, v. 65, p. 1254-1263, 2012. https://doi.org/10.1016/j.jbusres.2011.11.001

HAZARIKA, N.; ZHANG, X. Sustainable Production and Consumption Evolving theories of eco-innovation: A systematic review. Sustainable Production and Consumption, v. 19, p. 64 - 78, 2019. https://doi.org/10.1016/j.spc.2019.03.002

HORBACH, J.; RAMMER, C.; RENNINGS, K. Determinants of eco-innovations by type of environmental impact: the role of regulatory push/pull, technology push and market pull. Ecological Economics, v. 78, p. 112-122, 2012. https://doi.org/10.1016/j.ecolecon.2012.04.005

KEMP, R.; PEARSON, P. Measuring Eco-Innovation. Research Brief, v. 1, 2008. Disponível em: http://www.oecd.org/env/consumption-innovation/43960830.pdf. Acesso em: 09 jun. 2020.

KUO, T.-C.; SMITH, S. A systematic review of technologies involving eco-innovation for enterprises moving towards sustainability. Journal of Cleaner Production, v. 192, p. 207-220, 2018. https://doi.org/10.1016/j.jclepro.2018.04.212

MARIKYAN, D.; PAPAGIANNIDIS, S.; ALAMANOS, E. A systematic review of the smart home literature: A user perspective. Technological Forecasting and Social Change, v. 138, p. 139–154, 2019. https://doi.org/10.1016/j.techfore.2018.08.015

MEYERS, R. J.; WILLIAMS, E. D.; MATTHEWS, H. S. Scoping the potential of monitoring and control technologies to reduce energy use in homes. Energy and Buildings, v. 42, p. 563–569, 2010. https://doi.org/10.1016/j.enbuild.2009.10.026

NELSON, R. R.; WINTER, S. G. In search of useful theory of innovation. Research Policy, v. 6, n. 1, p. 36-76, 1977. https://doi.org/10.1016/0048-7333(77)90029-4

NELSON, R. R.; WINTER, S. G. Toward an evolutionary theory of economic capabilities. The American Economic Review, v. 63, n. 2, p. 440-449, 1973. www.jstor.org/stable/1817107

OECD PUBLICATIONS. Frascati manual: proposed standard practice for surveys on research and experimental development. OECD, 2002.

OECD. Sustainable manufacturing and eco‑innovation: towards a green economy. Policy Brief, 2009.

OPREA, S. V.; BÂRA, A.; IFRIM, G. A.; COROIANU, L. Day-ahead electricity consumption optimization algorithms for smart homes. Computers & Industrial Engineering, v. 135, p. 382–401, 2019. https://doi.org/10.1016/j.cie.2019.06.023

PARK, C. K.; KIMC, H. J.; KIM, Y. S. A study of factors enhancing smart grid consumer engagement. Energy Policy, v. 72, p.211-218, 2014. https://doi.org/10.1016/j.enpol.2014.03.017

PENG, D. X.; LAI, F. Using partial least squares in operations management research: a practical guideline and summary of past research. Journal of Operations Management, v. 30, n. 6, p. 467-480, 2012. https://doi.org/10.1016/j.jom.2012.06.002

SANTOS, D. F. L.; REZENDE, D. V.; BASSO, L. F. C. Eco-innovation and business performance in emerging and developed economies. Journal of Cleaner Production, v. 237, 2019. https://doi.org/10.1016/j.jclepro.2019.117674

SCHILL, M.; GODEFROIT-WINKEL, D.; BARBAROSSA, C. Consumers' intentions to purchase smart home objects: do environmental issues matter? Ecological Economics, v. 161, p. 176-185, 2019. https://doi.org/10.1016/j.ecolecon.2019.03.028

SCHNÉ, T.; JASKÓ, S.; SIMON, G. Embeddable adaptive model predictive refrigerator control for cost-efficient and sustainable operation. Journal of Cleaner Production, v. 190, p. 496–507, 2018. https://doi.org/10.1016/j.jclepro.2018.04.137

SHAIKH, P. H.; NOR, N. B. M.; NALLAGOWNDEN, P.; ELAMVAZUTHI, I.; IBRAHIM, T. A review on optimized control systems for building energy and comfort management of smart sustainable buildings. Renewable and Sustainable Energy Reviews, v. 34, p. 409–429, 1 jun. 2014. https://doi.org/10.1016/j.rser.2014.03.027

SHUHAIBER, A.; MASHAL, I. Understanding users' acceptance of smart homes. Technology in Society, v. 58, p. 1-9, 2019. https://doi.org/10.1016/j.techsoc.2019.01.003

SOLOW, R. M. Perspectives on growth theory. Journal of economic perspectives, v. 8, n. 1, p. 45-54, 1994. https://doi.org/10.1257/jep.8.1.45

STRENGERS, Y.; NICHOLLS, L. Convenience and energy consumption in the smart home of the future: Industry visions from Australia and beyond. Energy Research & Social Science, v. 32, p. 86–93, 1 out. 2017. https://doi.org/10.1016/j.erss.2017.02.008

YANG, H.; LEE, H. Lighting scheduling for energy saving in smart house based on life log data. Procedia Environmental Sciences, v. 22, p. 403-413, 2014. https://doi.org/10.1016/j.proenv.2014.11.038

Publicado

15-06-2020

Como Citar

Nascimento, D. R., & Fettermann, D. de C. (2020). O efeito da consciência ambiental na intenção de uso de smart homes. Revista Produção Online, 20(2), 575–597. https://doi.org/10.14488/1676-1901.v20i2.4011

Edição

Seção

Artigos