Análise do uso do pensamento estatístico e de técnicas estatísticas na indústria química do estado de São Paulo, Brasil
DOI:
https://doi.org/10.14488/1676-1901.v19i2.3234Palavras-chave:
Pensamento Estatístico. Técnicas Estatísticas. Aplicação. Efeitos. Indústria Química.Resumo
As abordagens para a gestão da produção e melhoria são baseadas em tomadas de decisão baseadas em fatos e auxiliadas pelo Pensamento Estatístico (PE) e pelo uso de Técnicas Estatísticas (TE). A pesquisa descrita neste artigo buscou identificar o grau de implementação do PE e TE e, ainda, avalia o seu impacto nos processos de controle e melhoria e a satisfação com essa implementação nas empresas do setor químico localizadas no estado de São Paulo, Brasil. Aplicou-se questionários estruturados e foram realizadas entrevistas em profundidade com especialistas para obtenção de dados e informações. A amostra conseguida é composta por 30 empresas de médio e grande portes. Como principais resultados deste estudo está a percepção de que na maior parte das empresas amostradas há um baixo grau de uso de PE e TE, evidenciando oportunidades para o incremento do desempenho dos processos a partir da aplicação da abordagem estatística e que empresas que não aplicam sistematicamente o PE e as TE têm percebido a necessidade de fazê-lo para potencializar seu desempenho produtivo.
Downloads
Referências
ABRAHAN, B. Statistics in Business and Industry: implementation. International Statistical Review, v.73, n.2, p.173-176, 2005. https://doi.org/10.1111/j.1751-5823.2005.tb00263.x
AHMED, S.; HASSAN, M. Survey and case investigations on application of quality management tools and techniques in SMIs. International Journal of Quality & Reliability Management, v. 20, n. 7, p. 795-826, 2003. https://doi.org/10.1108/02656710310491221
ANDERSON-COOK, C.M. et al. Statistical engineering: forming the foundations. Quality Engineering, v. 24, n. 2, p.110-132., 2012. https://doi.org/10.1080/08982112.2012.641150
ANTONY, J.; BAÑUELAS, R. Critical success factors for the successful implementation of Six Sigma projects in organizations. The TQM magazine, v. 14 n. 2, p. 92-99, 2002. https://doi.org/10.1108/09544780210416702
ANTONY, J.; DESAI, D. A. Assessing the status of Six Sigma implementation in the Indian industry: results from an exploratory empirical study. Management Research News, v. 32, n. 5, p. 413-423, 2009. https://doi.org/10.1108/01409170910952921
ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA QUÍMICA. A Indústria Química Brasileira. São Paulo, 2017. Disponível em: http://www.abiquim.org.br/includes/pdf/indQuimica/AIndustriaQuimica-Conceitos.pdf. Acesso em: 24/04/2018.
______. O Desempenho da Indústria Química Brasileira em 2016. São Paulo, 2017. Disponível em: http://www.abiquim.org.br/includes/pdf/indQuimica/livreto-de-dados-2016-paginas.pdf . Acesso em: 24 abr. 2018.
BAÑUELAS, R.; ANTONY, J.; BRACE, M. An application of Six Sigma to reduce waste. Quality and Reliability Engineering International, v. 21, n. 6, p. 553-570, 2005. https://doi.org/10.1002/qre.669
BELEKOUKIAS, I.; GARZA-REYES, J. A.; KUMAR, V. (2014), The impact of lean methods and tools on the operational performance of manufacturing organisations, International Journal of Production Research, v. 52, n. 18, p. 5346-5366, 2014. https://doi.org/10.1080/00207543.2014.903348
BJERKE, F.; HERSLETH, M. Introducing statistical thinking to the food industry: facilitating and inhibiting factors. Quality Management Journal, v.8, n.3, p.49-60, 2001. https://doi.org/10.1080/10686967.2001.11918966
BOX, G. E. P.; WOODALL, W. H. Innovation, quality engineering, and Statistics, Quality Engineering, v. 24, n. 1, p. 20-29, 2012. https://doi.org/10.1080/08982112.2012.627003
BRITZ, G. C. et al. Improving performance through statistical thinking. 1. ed. Milwaukee: ASQ Quality Press, 2000. 177 p.
CHANCE, B. L. Components of Statistical Thinking and Implications for Instruction and Assessment. Journal of Statistics Education, v. 10, n. 3, p. 1-14, 2002. https://doi.org/10.1080/10691898.2002.11910677
COBB, G. Teaching Statistics. In: Heeding the call for change: suggestions for curricular action. In: STEEN, L. A. MAA Math Notes 22. Washington: Mathematical Association of America, p. 3-34, 1992.
COLEMAN, S.Y. Statistical Thinking in the quality movement ± 25 years. The TQM Journal, v.25, n.6, p.597-605, 2013. https://doi.org/10.1108/TQM-06-2013-0075
DOES, R.J.M.M.; TRIP, A.; SCHIPPERS, W.A.J. A framework for implementation of statistical process control. International Journal of Quality Science, v. 2, n. 3, p. 181-198, 1997. https://doi.org/10.1108/13598539710170821
DRANSFIELD, S. B.; FISHER, N. I.; VOGEL, N. J. Using statistics and statistical thinking to improve organisational performance. International Statistical Review, v. 67, n. 2, p. 99-122, 1999. https://doi.org/10.1111/j.1751-5823.1999.tb00417.x
ELG, M.; OLSSON, J.; DAHLGAARD, J. Implementing statistical process control: an organizational perspective. International Journal of Quality & Reliability Management, v. 25, n. 6, p. 545-560, 2008. https://doi.org/10.1108/02656710810881872
EVANS, J. R.; LINDSAY, W. M. The management and control of quality. Mason: Thomson South-Western. 6. ed., 2005. 760 p.
FIRKA, D. Statistical, technical and sociological dimensions of design of experiments. The TQM Journal, v. 23, n. 4, p. 435-445, 2011. https://doi.org/10.1108/17542731111139509
GALLARDO, J. Métodos jerárquicos de análisis cluster. Curso de Diplomatura Estadística Teórico Práctico de la Universidad de Granada, 2011. Disponível em: <http://www.ugr.es/~gallardo/pdf/cluster-3.pdf>. Acesso em: 24 abr. 2018.
GHOSH, M. Lean manufacturing performance in Indian manufacturing plants. Journal of Manufacturing Technology Management, v. 24, n. 1, p. 113-122, 2013. https://doi.org/10.1108/17410381311287517
GIJO, E. V.; ANTONY, J. Reducing patient waiting time in outpatient department using lean six sigma methodology. Quality and Reliability Engineering International, v. 30, n. 8, p. 1481-1491, 2014. https://doi.org/10.1002/qre.1552
GOH, T. N. Raising statistical literacy for manufacturing productivity. International Journal of Quality & Reliability Management, v. 7, n. 3, p. 27-34, 1990. https://doi.org/10.1108/02656719010138669
GOLDMAN, H. H. The Origins and Development of Quality Initiatives in American Business. The TQM Magazine, v. 17, n. 3, p. 217-225, 2005. https://doi.org/10.1108/09544780510594180
GRIGG, N.; WALLS, L. Developing statistical thinking for performance improvement in the food industry. International Journal of Quality & Reliability Management, v. 24, n.4, p. 347-369, 2007. https://doi.org/10.1108/02656710710740536
HARE, L.B. Linking statistical thinking to Six Sigma. International Journal of Six Sigma and Competitive Advantage, v.1, n.4, p.389-402, 2005. https://doi.org/10.1504/IJSSCA.2005.008505
HARE, L. B. Statistical engineering- principles and examples. Quality Engineering, v.24, n.2, p.153-161, 2012. https://doi.org/10.1080/08982112.2012.641144
HOERL, R. W.; SNEE, R. D. Closing the gap: statistical engineering links statistical thinking, methods and tools. Quality Progress, p. 52–53, 2010.
______. Statistical Thinking: improving business performance. 2.ed. New Jersey: John Wiley & Sons, 2012. 514 p.
JOHNSON, R. A.; WICHERN, D. W. Applied multivariate statistical analysis. 6 ed. Boston: Pearson High Education USA, 2007. 800 p.
KUMAR, M.; ANTONY, J.; TIWARI, M.K. Six Sigma implementation framework for SMEs: a roadmap to manage and sustain the change. International Journal of Production Research, v. 49, n. 18, p. 5449-5467, 2011. https://doi.org/10.1080/00207543.2011.563836
LIM, S. A. H.; ANTONY, J.; ABLIWI, S. Statistical Process Control (SPC) in the food industry: a systematic review and future research agenda. Trends in Food Science & Technology, v. 37, n. 2, p. 137-151, 2014. https://doi.org/10.1016/j.tifs.2014.03.010
MAKRYMICHALOS, M. et al. Statistical thinking and its role for industrial engineers and managers in the 21st century. Managerial Auditing Journal, v.20, n.4, p.354-363, 2005. https://doi.org/10.1108/02686900510592043
MALLOWS, C. The zeroth problem. The American Statistician, v. 52, p. 1-9, 1998. https://doi.org/10.1080/00031305.1998.10480528
MONTGOMERY, D. C. A modern framework for achieving enterprise excellence. International Journal of Lean Six Sigma, v.1, n.1, p.56-65, 2010. https://doi.org/10.1108/20401461011033167
______. Introdução ao Controle Estatístico da Qualidade. 4. ed. Rio de Janeiro: LTC, 2016. 549 p.
PARK, M.; KIM, J. J. Y.; KWON, K. M.; YU, G. J. Process control and economic cost design for total quality management. Total Quality Management & Business Excellence, v. 28, n. 7-8, p. 858-878, 2017. https://doi.org/10.1080/14783363.2015.1133243
RAMESH, N.; RAVI, A. TQM tools and techniques in promoting team working culture in the manufacturing organizations. International Journal of Productivity and Quality Management, v. 12, n. 4, p. 466-479, 2013. https://doi.org/10.1504/IJPQM.2013.056777
RAY, S et al. Measuring Six Sigma project effectiveness using fuzzy approach. Quality and Reliability Engineering International, v. 29, n. 3, p. 417-430; 2013. https://doi.org/10.1002/qre.1391
SANTOS, A. B.; MARTINS, M. F. Modelo de referência para estruturar o Seis Sigma nas organizações. Gestão & Produção, v.15, n.1, p.43-56, 2008. https://doi.org/10.1590/S0104-530X2008000100006
______. Contribuições do Seis Sigma: estudo de caso em multinacionais. Produção, v.20, n.1, p.42-53, 2010. https://doi.org/10.1590/S0103-65132010005000003
SINCLAIR, K. A.; SADLER, B. A. Going beyond SPC: why we need statistical thinking in operations such as carbon plants. In: TOMSETT, A.; JOHNSON, J. (ed) Essential Reading in Light Metals. Wiley: TMS, v.4, 2013. p.365-370. https://doi.org/10.1002/9781118647745.ch48
SMITH, T. M. F. Discussion in response to Wild and Pfannkuch. International Statistical Review, v. 67, n. 3, p. 248-250, 1999. https://doi.org/10.1111/j.1751-5823.1999.tb00443.x
SNEE, R. D. Discussion: “development and use of statistical thinking: a new era”. International Statistical Review, v. 67, n. 3, p. 255-258, 1999. https://doi.org/10.1111/j.1751-5823.1999.tb00446.x
______. Getting Better Business Results: using statistical thinking and methods to shape the bottom line. Quality Progress, p.102-106, 1998.
______. Six Sigma: the evolution of 100 years of business improvement methodology. International Journal of Six Sigma and Competitive Advantage, v. 1, n. 1, p. 4-20, 2004. https://doi.org/10.1504/IJSSCA.2004.005274
______. Statistical thinking and its contribution to total quality. The American Statistician, v.44, n.2, p.116-121, 1990. https://doi.org/10.2307/2684144
WANG, F. K.; CHEN, K. S. Application of Lean Six Sigma to a panel equipment manufacturer. Total Quality Management & Business Excellence, v. 23, n. 3-4, p. 417-429, 2012. https://doi.org/10.1080/14783363.2011.593876
WILD, C. J.; PFANNKUCH, M. Statistical Thinking in Empirical Enquiry. International Statistical Review, v. 67, n. 3, p. 223-265, 1999. https://doi.org/10.2307/1403699
Publicado
Como Citar
Edição
Seção
Licença
A Revista se reserva no direito de efetuar, no artigo publicado, alterações de ordem normativa, ortográfica e gramatical, com vistas a manter o padrão culto da língua, respeitando, porém, o estilo dos autores.
A obra publicada é de inteira responsabilidade do(s) autor(es), cabendo à Revista Produção Online apenas a avaliação da obra, na qualidade de veículo de publicação científica. A Revista Produção Online não se responsabiliza por eventuais violações à Lei nº 9.610/1998, Lei de Direito Autoral.
A revista Produção Online permite que o autor detenha o copyright dos artigos aceitos para publicação, sem restrições.
Esta obra está licenciada sob uma Licença Creative Commons.