Análise do uso do pensamento estatístico e de técnicas estatísticas na indústria química do estado de São Paulo, Brasil

Autores

  • Miguel Ángel Aires Borrás Universidade Federal de São Carlos (UFSCar), Sorocaba, SP. https://orcid.org/0000-0002-9883-0509
  • Fabiane Letícia Lizarelli Universidade Federal de São Carlos (UFSCar), São Carlos, SP.
  • José Carlos de Toledo Universidade Federal de São Carlos (UFSCar), São Carlos, SP.
  • Manoel Fernando Martins Universidade Federal de São Carlos (UFSCar), São Carlos, SP.

DOI:

https://doi.org/10.14488/1676-1901.v19i2.3234

Palavras-chave:

Pensamento Estatístico. Técnicas Estatísticas. Aplicação. Efeitos. Indústria Química.

Resumo

As abordagens para a gestão da produção e melhoria são baseadas em tomadas de decisão baseadas em fatos e auxiliadas pelo Pensamento Estatístico (PE) e pelo uso de Técnicas Estatísticas (TE). A pesquisa descrita neste artigo buscou identificar o grau de implementação do PE e TE e, ainda, avalia o seu impacto nos processos de controle e melhoria e a satisfação com essa implementação nas empresas do setor químico localizadas no estado de São Paulo, Brasil. Aplicou-se questionários estruturados e foram realizadas entrevistas em profundidade com especialistas para obtenção de dados e informações. A amostra conseguida é composta por 30 empresas de médio e grande portes. Como principais resultados deste estudo está a percepção de que na maior parte das empresas amostradas há um baixo grau de uso de PE e TE, evidenciando oportunidades para o incremento do desempenho dos processos a partir da aplicação da abordagem estatística e que empresas que não aplicam sistematicamente o PE e as TE têm percebido a necessidade de fazê-lo para potencializar seu desempenho produtivo.

Downloads

Não há dados estatísticos.

Biografia do Autor

Miguel Ángel Aires Borrás, Universidade Federal de São Carlos (UFSCar), Sorocaba, SP.

Departamento de Engenharia de Produção de Sorocaba (DEP-So), Engenharia de Produção.

Fabiane Letícia Lizarelli, Universidade Federal de São Carlos (UFSCar), São Carlos, SP.

Departamento de Engenharia de Produção (DEP), Engenharia de Produção.

José Carlos de Toledo, Universidade Federal de São Carlos (UFSCar), São Carlos, SP.

Departamento de Engenharia de Produção (DEP), Engenharia de Produção.

Manoel Fernando Martins, Universidade Federal de São Carlos (UFSCar), São Carlos, SP.

Departamento de Engenharia de Produção (DEP), Engenharia de Produção.

Referências

ABRAHAN, B. Statistics in Business and Industry: implementation. International Statistical Review, v.73, n.2, p.173-176, 2005. https://doi.org/10.1111/j.1751-5823.2005.tb00263.x

AHMED, S.; HASSAN, M. Survey and case investigations on application of quality management tools and techniques in SMIs. International Journal of Quality & Reliability Management, v. 20, n. 7, p. 795-826, 2003. https://doi.org/10.1108/02656710310491221

ANDERSON-COOK, C.M. et al. Statistical engineering: forming the foundations. Quality Engineering, v. 24, n. 2, p.110-132., 2012. https://doi.org/10.1080/08982112.2012.641150

ANTONY, J.; BAÑUELAS, R. Critical success factors for the successful implementation of Six Sigma projects in organizations. The TQM magazine, v. 14 n. 2, p. 92-99, 2002. https://doi.org/10.1108/09544780210416702

ANTONY, J.; DESAI, D. A. Assessing the status of Six Sigma implementation in the Indian industry: results from an exploratory empirical study. Management Research News, v. 32, n. 5, p. 413-423, 2009. https://doi.org/10.1108/01409170910952921

ASSOCIAÇÃO BRASILEIRA DA INDÚSTRIA QUÍMICA. A Indústria Química Brasileira. São Paulo, 2017. Disponível em: http://www.abiquim.org.br/includes/pdf/indQuimica/AIndustriaQuimica-Conceitos.pdf. Acesso em: 24/04/2018.

______. O Desempenho da Indústria Química Brasileira em 2016. São Paulo, 2017. Disponível em: http://www.abiquim.org.br/includes/pdf/indQuimica/livreto-de-dados-2016-paginas.pdf . Acesso em: 24 abr. 2018.

BAÑUELAS, R.; ANTONY, J.; BRACE, M. An application of Six Sigma to reduce waste. Quality and Reliability Engineering International, v. 21, n. 6, p. 553-570, 2005. https://doi.org/10.1002/qre.669

BELEKOUKIAS, I.; GARZA-REYES, J. A.; KUMAR, V. (2014), The impact of lean methods and tools on the operational performance of manufacturing organisations, International Journal of Production Research, v. 52, n. 18, p. 5346-5366, 2014. https://doi.org/10.1080/00207543.2014.903348

BJERKE, F.; HERSLETH, M. Introducing statistical thinking to the food industry: facilitating and inhibiting factors. Quality Management Journal, v.8, n.3, p.49-60, 2001. https://doi.org/10.1080/10686967.2001.11918966

BOX, G. E. P.; WOODALL, W. H. Innovation, quality engineering, and Statistics, Quality Engineering, v. 24, n. 1, p. 20-29, 2012. https://doi.org/10.1080/08982112.2012.627003

BRITZ, G. C. et al. Improving performance through statistical thinking. 1. ed. Milwaukee: ASQ Quality Press, 2000. 177 p.

CHANCE, B. L. Components of Statistical Thinking and Implications for Instruction and Assessment. Journal of Statistics Education, v. 10, n. 3, p. 1-14, 2002. https://doi.org/10.1080/10691898.2002.11910677

COBB, G. Teaching Statistics. In: Heeding the call for change: suggestions for curricular action. In: STEEN, L. A. MAA Math Notes 22. Washington: Mathematical Association of America, p. 3-34, 1992.

COLEMAN, S.Y. Statistical Thinking in the quality movement ± 25 years. The TQM Journal, v.25, n.6, p.597-605, 2013. https://doi.org/10.1108/TQM-06-2013-0075

DOES, R.J.M.M.; TRIP, A.; SCHIPPERS, W.A.J. A framework for implementation of statistical process control. International Journal of Quality Science, v. 2, n. 3, p. 181-198, 1997. https://doi.org/10.1108/13598539710170821

DRANSFIELD, S. B.; FISHER, N. I.; VOGEL, N. J. Using statistics and statistical thinking to improve organisational performance. International Statistical Review, v. 67, n. 2, p. 99-122, 1999. https://doi.org/10.1111/j.1751-5823.1999.tb00417.x

ELG, M.; OLSSON, J.; DAHLGAARD, J. Implementing statistical process control: an organizational perspective. International Journal of Quality & Reliability Management, v. 25, n. 6, p. 545-560, 2008. https://doi.org/10.1108/02656710810881872

EVANS, J. R.; LINDSAY, W. M. The management and control of quality. Mason: Thomson South-Western. 6. ed., 2005. 760 p.

FIRKA, D. Statistical, technical and sociological dimensions of design of experiments. The TQM Journal, v. 23, n. 4, p. 435-445, 2011. https://doi.org/10.1108/17542731111139509

GALLARDO, J. Métodos jerárquicos de análisis cluster. Curso de Diplomatura Estadística Teórico Práctico de la Universidad de Granada, 2011. Disponível em: <http://www.ugr.es/~gallardo/pdf/cluster-3.pdf>. Acesso em: 24 abr. 2018.

GHOSH, M. Lean manufacturing performance in Indian manufacturing plants. Journal of Manufacturing Technology Management, v. 24, n. 1, p. 113-122, 2013. https://doi.org/10.1108/17410381311287517

GIJO, E. V.; ANTONY, J. Reducing patient waiting time in outpatient department using lean six sigma methodology. Quality and Reliability Engineering International, v. 30, n. 8, p. 1481-1491, 2014. https://doi.org/10.1002/qre.1552

GOH, T. N. Raising statistical literacy for manufacturing productivity. International Journal of Quality & Reliability Management, v. 7, n. 3, p. 27-34, 1990. https://doi.org/10.1108/02656719010138669

GOLDMAN, H. H. The Origins and Development of Quality Initiatives in American Business. The TQM Magazine, v. 17, n. 3, p. 217-225, 2005. https://doi.org/10.1108/09544780510594180

GRIGG, N.; WALLS, L. Developing statistical thinking for performance improvement in the food industry. International Journal of Quality & Reliability Management, v. 24, n.4, p. 347-369, 2007. https://doi.org/10.1108/02656710710740536

HARE, L.B. Linking statistical thinking to Six Sigma. International Journal of Six Sigma and Competitive Advantage, v.1, n.4, p.389-402, 2005. https://doi.org/10.1504/IJSSCA.2005.008505

HARE, L. B. Statistical engineering- principles and examples. Quality Engineering, v.24, n.2, p.153-161, 2012. https://doi.org/10.1080/08982112.2012.641144

HOERL, R. W.; SNEE, R. D. Closing the gap: statistical engineering links statistical thinking, methods and tools. Quality Progress, p. 52–53, 2010.

______. Statistical Thinking: improving business performance. 2.ed. New Jersey: John Wiley & Sons, 2012. 514 p.

JOHNSON, R. A.; WICHERN, D. W. Applied multivariate statistical analysis. 6 ed. Boston: Pearson High Education USA, 2007. 800 p.

KUMAR, M.; ANTONY, J.; TIWARI, M.K. Six Sigma implementation framework for SMEs: a roadmap to manage and sustain the change. International Journal of Production Research, v. 49, n. 18, p. 5449-5467, 2011. https://doi.org/10.1080/00207543.2011.563836

LIM, S. A. H.; ANTONY, J.; ABLIWI, S. Statistical Process Control (SPC) in the food industry: a systematic review and future research agenda. Trends in Food Science & Technology, v. 37, n. 2, p. 137-151, 2014. https://doi.org/10.1016/j.tifs.2014.03.010

MAKRYMICHALOS, M. et al. Statistical thinking and its role for industrial engineers and managers in the 21st century. Managerial Auditing Journal, v.20, n.4, p.354-363, 2005. https://doi.org/10.1108/02686900510592043

MALLOWS, C. The zeroth problem. The American Statistician, v. 52, p. 1-9, 1998. https://doi.org/10.1080/00031305.1998.10480528

MONTGOMERY, D. C. A modern framework for achieving enterprise excellence. International Journal of Lean Six Sigma, v.1, n.1, p.56-65, 2010. https://doi.org/10.1108/20401461011033167

______. Introdução ao Controle Estatístico da Qualidade. 4. ed. Rio de Janeiro: LTC, 2016. 549 p.

PARK, M.; KIM, J. J. Y.; KWON, K. M.; YU, G. J. Process control and economic cost design for total quality management. Total Quality Management & Business Excellence, v. 28, n. 7-8, p. 858-878, 2017. https://doi.org/10.1080/14783363.2015.1133243

RAMESH, N.; RAVI, A. TQM tools and techniques in promoting team working culture in the manufacturing organizations. International Journal of Productivity and Quality Management, v. 12, n. 4, p. 466-479, 2013. https://doi.org/10.1504/IJPQM.2013.056777

RAY, S et al. Measuring Six Sigma project effectiveness using fuzzy approach. Quality and Reliability Engineering International, v. 29, n. 3, p. 417-430; 2013. https://doi.org/10.1002/qre.1391

SANTOS, A. B.; MARTINS, M. F. Modelo de referência para estruturar o Seis Sigma nas organizações. Gestão & Produção, v.15, n.1, p.43-56, 2008. https://doi.org/10.1590/S0104-530X2008000100006

______. Contribuições do Seis Sigma: estudo de caso em multinacionais. Produção, v.20, n.1, p.42-53, 2010. https://doi.org/10.1590/S0103-65132010005000003

SINCLAIR, K. A.; SADLER, B. A. Going beyond SPC: why we need statistical thinking in operations such as carbon plants. In: TOMSETT, A.; JOHNSON, J. (ed) Essential Reading in Light Metals. Wiley: TMS, v.4, 2013. p.365-370. https://doi.org/10.1002/9781118647745.ch48

SMITH, T. M. F. Discussion in response to Wild and Pfannkuch. International Statistical Review, v. 67, n. 3, p. 248-250, 1999. https://doi.org/10.1111/j.1751-5823.1999.tb00443.x

SNEE, R. D. Discussion: “development and use of statistical thinking: a new era”. International Statistical Review, v. 67, n. 3, p. 255-258, 1999. https://doi.org/10.1111/j.1751-5823.1999.tb00446.x

______. Getting Better Business Results: using statistical thinking and methods to shape the bottom line. Quality Progress, p.102-106, 1998.

______. Six Sigma: the evolution of 100 years of business improvement methodology. International Journal of Six Sigma and Competitive Advantage, v. 1, n. 1, p. 4-20, 2004. https://doi.org/10.1504/IJSSCA.2004.005274

______. Statistical thinking and its contribution to total quality. The American Statistician, v.44, n.2, p.116-121, 1990. https://doi.org/10.2307/2684144

WANG, F. K.; CHEN, K. S. Application of Lean Six Sigma to a panel equipment manufacturer. Total Quality Management & Business Excellence, v. 23, n. 3-4, p. 417-429, 2012. https://doi.org/10.1080/14783363.2011.593876

WILD, C. J.; PFANNKUCH, M. Statistical Thinking in Empirical Enquiry. International Statistical Review, v. 67, n. 3, p. 223-265, 1999. https://doi.org/10.2307/1403699

Publicado

15-06-2019

Como Citar

Borrás, M. Ángel A., Lizarelli, F. L., Toledo, J. C. de, & Martins, M. F. (2019). Análise do uso do pensamento estatístico e de técnicas estatísticas na indústria química do estado de São Paulo, Brasil. Revista Produção Online, 19(2), 518–544. https://doi.org/10.14488/1676-1901.v19i2.3234

Edição

Seção

Artigos