Um modelo fuzzy-qfd para priorização de ações de gestão de resíduos de equipamentos eletroeletrônicos

Autores

  • Francisco Rodrigues Lima Junior Universidade Tecnológica Federal do Paraná
  • Letícia Franciele de Faria Ferreira Cento Universitário da Fundação Educacional Guaxupé
  • Ana Paula Duarte Seleghim Cento Universitário da Fundação Educacional Guaxupé
  • Luiz Cesar Ribeiro Carpinetti Universidade de São Paulo

DOI:

https://doi.org/10.14488/1676-1901.v18i2.2958

Palavras-chave:

Gestão de resíduos eletroeletrônicos. Fuzzy-QFD. Decisão multicritério.

Resumo

Na literatura acadêmica há diversos modelos de decisão multicritério de apoio à gestão de resíduos sólidos. Contudo, não são encontrados estudos que foquem na priorização de ações de gestão de resíduos sólidos com o apoio de tais técnicas. Esse estudo propõe um modelo baseado no método fuzzy-QFD (Quality Function Deployment) para a priorização de ações de gestão de resíduos de equipamentos eletroeletrônicos (REEE). A implementação computacional foi feita usando MS Excel. O modelo foi aplicado em um centro universitário para definir a sequência de implantação de um conjunto de ações de gestão de REEE. Os resultados indicam que primeiramente a instituição deve substituir as pilhas comuns por recarregáveis. Em seguida, deve-se destinar os resíduos de pilhas aos fabricantes originais, instalar postos internos de recolhimento das mesmas, desenvolver políticas visuais de combate a desperdícios e adotar critérios ambientais no ato da compra de computadores. O modelo proposto pode ser aplicado em problemas de seleção ou de priorização de ações de gestão de resíduos que envolvam decisão em grupo sob incerteza.

Downloads

Não há dados estatísticos.

Referências

ABDI. Agência Brasileira de Desenvolvimento Industrial. Logística Reversa de Equipamentos Eletroeletrônicos: Análise de Viabilidade Técnica e Econômica. Brasília: Inventta Consultoria Ltda. 2013.

AFROZ, R.; MASUD, M.M.; AKHTAR, R.; DUASA, J. Survey and analysis of public knowledge, awareness and willingness to pay in Kuala Lumpur, Malaysia - a case study on household WEEE management. Journal of Cleaner Production, v.52, p.185-193, 2013. DOI: https://doi.org/10.1016/j.jclepro.2013.02.004

BERTRAND, J.W.M.; FRANSOO, J. Operations management research methodologies using quantitative modeling. International Journal of Operations and Production Management, v.22, p.241-264, 2002. DOI:https://doi.org/10.1108/01443570210414338

BRASIL. Política Nacional de Resíduos Sólidos - Lei nº 12.305, de 2 de agosto de 2010. Diário Oficial da República Federativa do Brasil, Brasília, 2010.

BRASIL. Resolução CONAMA nº 257, de 30 de junho de 1999. Diário Oficial da República Federativa do Brasil, Brasília, 1999a.

BRASIL. Resolução CONAMA nº 293, de 30 de junho de 1999. Diário Oficial da República Federativa do Brasil, Brasília, 1999b.

BRASIL. Resolução CONAMA nº 401, de 4 de novembro de 2008. Diário Oficial da República Federativa do Brasil, Brasília, 2008.

DURSUN, M.; KARSAK, E.; KARADAYI, M.A. Assessment of health-care waste treatment alternatives using fuzzy multi-criteria decision making approaches. Resources, Conservation and Recycling, v.57, p.98–107, 2011. DOI:https://doi.org/10.1016/j.resconrec.2011.09.012

DURSUN, M.; KARSAK, E.E. A QFD-based fuzzy MCDM approach for supplier selection. Applied Mathematical Modelling, v.37, p.5864-5875, 2013. DOI:https://doi.org/10.1016/j.apm.2012.11.014

EISELT, H.A.; MARIANOV, V. Location modeling for municipal solid waste facilities. Computers & Operations Research, v.62, p.305–315, 2015. DOI:https://doi.org/10.1016/j.cor.2014.05.003

FERREIRA, J.M.B.; FERREIRA, C.A.A. Sociedade da Informação e o Desafio da Sucata Eletrônica. Revista de Ciências Exatas e Tecnologia, v.3, p.157-170, 2008.

FUNG, R.Y.K.; LAW, D.S.T.; IP, W.H. Design targets determination for inter-dependent product attributes in QFD using fuzzy inference. Integrated Manufacturing Systems, v.10, p.376-384, 1999. DOI:https://doi.org/10.1108/09576069910293040

GUERRERO-BAENA, M.D.; GOMEZ-LIMON, J.A.; FRUET, J.V. A multicriteria method for environmental management system selection: an intellectual capital approach. Journal of Cleaner Production, v.105, p.428-437, 2015.

DOI: https://doi.org/10.1016/j.jclepro.2014.07.079

IKHLAYEL, M. Environmental impacts and benefits of state-of-the-art technologies for E-waste management. Waste Management, 2017. DOI:https://doi.org/10.1016/j.wasman.2017.06.038

JUAN, Y.K.; PERNG, Y.P.; CASTRO-LACOUTURE, D.; LU, K.S. Housing refurbishment contractors selection based on a hybrid fuzzy-QFD approach. Automation in Construction, v.18, p.139-144, 2009. DOI: https://doi.org/10.1016/j.autcon.2008.06.001

KIM, Y.; CHUNG, E.; JUN, S.; KIM, S.U. Prioritizing the best sites for treated wastewater instream use in an urban watershed using fuzzy TOPSIS. Resources, Conservation and Recycling, v.73, p.23-32, 2013. DOI:https://doi.org/10.1016/j.resconrec.2012.12.009

KUMAR, S.; RAWAT, S. Future e-Waste: Standardisation for Reliable Assessment. Government Information Quarterly, 2017. DOI:https://doi.org/10.1016/j.giq.2015.11.006

LIMA JUNIOR, F.R.; CARPINETTI, L.C.R. A multicriteria approach based on Fuzzy QFD for choosing criteria for supplier selection. Computers and Industrial Engineering, v.110, p.269-285, 2016. DOI: https://doi.org/10.1016/j.cie.2016.09.014

LIMA JUNIOR, F.R.; OSIRO, L.; CARPINETTI, L.C.R. A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Applied Soft Computing, v. 21, p.194-209, 2014. https://doi.org/10.1016/j.asoc.2014.03.014

MILUTINOVIC, B.; STEFANOVIC, G.; DASSISTI, M. MARKOVIC, D.; VUCKOVIC, G. Multi-criteria analysis as a tool for sustainability assessment of a waste management model. Energy, v.74, p.190-201, 2014. DOI: https://doi.org/10.1016/j.energy.2014.05.056

NIXON, J.D.; DEY, P.K.; GHOSH, S.K.; DAVIES, P.A. Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process. Energy, v.59, p.215-223, 2013. DOI:https://doi.org/10.1016/j.energy.2013.06.052

OLIVERA, U.R.; MARINS, F.A.S.; MUNIZ JUNIOR; J. Logística reversa e identificação de produtos: revisão teórica para indústria eletroeletrônica. Produção Online, v.16, n.2, p.633-677, 2016. DOI:http://dx.doi.org/10.14488/1676-1901.v16i2.2049

PRAKASH, C.; BARUA, M.K. Integration of AHP-TOPSIS method for prioritizing the solutions of reverse logistics adoption to overcome its barriers under fuzzy environment. Journal of Manufacturing Systems, v. 37, p.599-615, 2015. DOI: https://doi.org/10.1016/j.jmsy.2015.03.001

SAMMALISTO, K.; SUNDSTRÖM, A., HOLM, T. Implementation of sustainability in universities as perceived by faculty and staff - a model from a Swedish university. Journal of Cleaner Production, v.106, p.45-54, 2016. DOI:https://doi.org/10.1016/j.jclepro.2014.10.015

SILVA, L.A.A.; PIMENTA; H.C.D.; CAMPOS; L.M.S. Logística reversa dos resíduos eletrônicos do setor de informática: realidade, perspectivas e desafios na cidade do Natal-RN. Produção Online, v.13, n. 2, p. 544-576, 2013. DOI:http://dx.doi.org/10.14488/1676-1901.v13i2.1133

SOUZA, R.G.; CLÍMACO, J.C.N.; SANT’ANNA, A.P.; ROCHA, T.B.; VALLE, R.A.B.; QUELHAS, O.L.G. Sustainability assessment and prioritisation of e-waste management options in Brazil. Waste Management, v.57, p.46-56, 2016. DOI:https://doi.org/10.1016/j.wasman.2016.01.034

TAUCHEN, J.; BRANDLI, L. L. A gestão ambiental em instituições de ensino superior: modelo para implantação em campus universitário. Gestão & Produção, v.13, p.503-515, 2006. DOI:http://dx.doi.org/10.1590/S0104-530X2006000300012

TEMPONI, C.; YEN, J.; TIAO, W.A. House of quality: A fuzzy logic-based requirements analysis. European Journal of Operational Research, v.117, p.340-354, 1999. DOI:https://doi.org/10.1016/S0377-2217(98)00275-6

UFSCAR. Universidade Federal De São Carlos. Grupo Ambiental Ipê Amarelo. Disponível em: <http://www.deaea.ufscar.br/projetos-de-extensao-1/projeto-canecas>. Acesso em: 08 de Julho de 2017.

UNESP. Universidade Estadual Paulista “Júlio de Mesquita Filho”. Programa de Reciclagem de Papel. Disponível em: <http://www.fca.unesp.br/Home/Extensao/ProjetoColetaSeletiva52/cartilha-smasp.pdf>. Acesso em: 08 de Julho de 2017.

WANG, J. Fuzzy outranking approach to prioritize design requirements in quality function deployment. International Journal of Production Research, v.37, p.899-916, 1999. DOI:https://doi.org/10.1080/002075499191599

WANG, X.; GAUSTAD, G. Prioritizing material recovery for end-of-life printed circuit boards. Waste Management, v.32, p.1903-1913, 2012. DOI:https://doi.org/10.1016/j.wasman.2012.05.005

WIBOWO, S.; DENG, H. Multi-criteria group decision making for evaluating the performance of e-waste recycling programs under uncertainty. Waste Management, v.40, p.127–135, 2015. DOI:https://doi.org/10.1016/j.wasman.2015.02.035

YAP, H.Y; NIXON, J.D. A multi-criteria analysis of options for energy recovery from municipal solid waste in India and the UK. Waste Management, v.46, p.265-277, 2015. DOI:https://doi.org/10.1016/j.wasman.2015.08.002

ZHANG, X.; HUANG, G. Municipal solid waste management planning considering greenhouse gas emission trading under fuzzy environment. Journal of Environmental Management, v.135, p.11-18, 2014. DOI: https://doi.org/10.1016/j.jenvman.2014.01.014

Publicado

15-06-2018

Como Citar

Lima Junior, F. R., Ferreira, L. F. de F., Seleghim, A. P. D., & Carpinetti, L. C. R. (2018). Um modelo fuzzy-qfd para priorização de ações de gestão de resíduos de equipamentos eletroeletrônicos. Revista Produção Online, 18(2), 713–742. https://doi.org/10.14488/1676-1901.v18i2.2958

Edição

Seção

Artigos

Artigos Semelhantes

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.