Estudo comparativo entre os métodos gradiente reduzido generalizado e algoritmo genético em otimização com múltiplas respostas

Autores

  • Fabrício Maciel Gomes Departamento de Engenharia Química Escola de Engenharia de Lorena Universidade de São Paulo http://orcid.org/0000-0001-7694-9835
  • Félix Monteiro Pereira Departamento de Engenharia Química Escola de Engenharia de Lorena Universidade de São Paulo http://orcid.org/0000-0002-5749-4107
  • Fernando Augusto Silva Marins Departamento de Produção Faculdade de Engenharia de Guaratinguetá Universidade Estadual Júlio Mesquita Filho http://orcid.org/0000-0001-6510-9187
  • Messias Borges Silva Departamento de Engenharia Química Escola de Engenharia de Lorena Universidade de São Paulo http://orcid.org/0000-0002-8656-0791

DOI:

https://doi.org/10.14488/1676-1901.v17i2.2566

Palavras-chave:

Otimização. Múltiplas Respostas. Algoritmo Genético. GRG.

Resumo

Neste trabalho foi realizado um estudo comparativo entre as metodologias de otimização Gradiente Reduzido Generalizado (GRG) e Algoritmo Genético (AG) para a otimização de processos com múltiplas respostas. Para estimar os parâmetros que minimizam a função objetivo foram utilizadas respostas geradas por planejamento de experimentos de forma aglutinada, as quais foram incorporadas à função objetivo. Os estudos de caso utilizados foram baseados em trabalhos selecionados na literatura e, para cada experimento selecionado, foi realizada a otimização dos valores dos parâmetros do processo utilizando as duas metodologias, o GRG, por meio de uma planilha do Microsoft Excel e o AG utilizando o software Scilab. Foram realizadas 10 replicações e calculada a média dos resultados obtidos. A comparação entre os métodos foi realizada com base em medidas de desempenho, por meio da distância média percentual. O AG apresentou melhores resultados em comparação com o GRG.

Downloads

Não há dados estatísticos.

Biografia do Autor

Fabrício Maciel Gomes, Departamento de Engenharia Química Escola de Engenharia de Lorena Universidade de São Paulo

Engenheiro Industrial Químico

Mestre em Engenharia Química

Doutor em Engenharia de Produção

Professor do Departamento de Engenharia Química

Área: Modelagem, Simulação e Otimização de Processos

Félix Monteiro Pereira, Departamento de Engenharia Química Escola de Engenharia de Lorena Universidade de São Paulo

Engenheiro Industrial Químico

Mestre em Biotecnologia Industrial

Doutor em Biotecnologia Industrial

Professor do Departamento de Engenharia Química

Área: Modelagem, Simulação e Otimização de Processos

Fernando Augusto Silva Marins, Departamento de Produção Faculdade de Engenharia de Guaratinguetá Universidade Estadual Júlio Mesquita Filho

Engenheiro Mecânico

Mestre em Ciências

Doutor em Engenharia Elétrica

Professor Titular do Departamento de Produção

Área: Modelagem e Pesquisa Operacional

Messias Borges Silva, Departamento de Engenharia Química Escola de Engenharia de Lorena Universidade de São Paulo

Engenheiro Industrial Químico

Mestre em Engenharia Mecânica

Doutor em Engenharia Química

Professor do Departamento de Engenharia Química

Área: Planejamento de Experimentos e Otimização de Processos

Referências

ABADIE, J.; CARPENTIER, J. Generalization of the Wolfe reduced gradient method to the case of nonlinear constraints. In: Optimization, ed. R. Fletcher, Londres: Academic Press, 1969.

AVILA, S. L., Otimização multiobjetivo e análise de sensibilidade para concepção de dispositivos. 2006. 148 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Santa Catarina. Florianópolis, 2006.

BAZGAN, C.; JAMAIN, F.; VANDERPOOTEN, D. Approximate Pareto sets of minimal size for multi-objective optimization problems. Operations Research Letters, v. 43, n. 1, p. 1-6, 2015. http://dx.doi.org/10.1016/j.orl.2014.10.003

CASTILLO, E.; MONTGOMERY, D.; McCARVILLE, D. Modified desirability functions for multiple response optimization. Journal of Quality Technology, v. 28, p. 337-345, 1996.

CHENG, C. B.; CHENG, C. J.; LEE, E. S. Neuro-fuzzy and genetic algorithm in multiple response optimization, Computer and Mathematics with Applications, v. 44, n. 12, p. 1503-1514, 2002. http://dx.doi.org/10.1016/S0898-1221(02)00274-2

DERRINGER, G.; SUICH, R. Simultaneous optimization of several response variables. Journal of Quality Technology, v. 12, n. 4, p. 214-219, 1980.

DEHURI, S.; CHO, S.B. Multi-criterion Pareto based particle swarm optimized polynomial neural network for classification: A review and state-of-the-art. Computer Science Review, v.3, p. 19-40, 2009. http://dx.doi.org/10.1016/j.cosrev.2008.11.002

DÍAS-GARCÍA, J.A.; BASHIRI, M. Multiple response optimization: An approach from multiobjective stochastic programming. Applied Mathematical Modelling, v. 38, n. 7-8, p. 2015–2027, 2014. http://dx.doi.org/10.1016/j.apm.2013.10.010

FAGHIHI, V.; REINSCHMIDT, K.F.; KANG, J.H., Construction scheduling using genetic algorithm based on building information model, Expert Systems with Applications, v. 41, n. 16, p. 7565-7578, 2014.

http://dx.doi.org/10.1016/j.eswa.2014.05.047

FOGEL, L. J.; OWENS, A. J.; WALSH, M. J. Artificial intelligence through simulated evolution. New York: John Wiley, 1966.

GOLDBERG, D. E. Genetic algorithms, In Search: optimization and machine learning. Berkeley: Addison-Wesley, 1989.

GOMES, F.M. ; PEREIRA, F.M. ; SILVA, M.B. ; MARINS, F.A S. . Aplicação da Meta-heuristica Algoritmo Genético na Otimização de Problemas com Múltiplas Respostas. In: Encontro Nacional de Engenharia de Produção ENEGEP, 2015, Fortaleza. Anais do Encontro Nacional de Engenharia de Produção ENEGEP e ICIEOM, 2015.

HARIDY, S., GOUDA, S. A., WU, Z. An integrated framework of statistical process control and design of experiments for optimizing wire electrochemical turning process. International Journal of Advanced Manufacturing Technology, v.53, p. 191-207, 2011. http://dx.doi.org/10.1007/s00170-010-2828-7

HAMMOUCHE, K.; DIAF, M.; SIARRY, P. A Comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem. Engineering Applications of Artificial Intelligence, v. 23, p. 676-688, 2010. http://dx.doi.org/10.1016/j.engappai.2009.09.011

HOLLAND, J. H. Adaptation in natural and artificial systems. Michigan: University of Michigan Press, 1975.

IGNÍZIO, J.P., CAVALIER, T.M. Linear Programming. Englewood Cliffs: Prentice Hall, 1994.

KHURI A.; CONLON M. Simultaneous optimization of multiple responses represented by polynomial regression functions. Technometrics, v. 23, n. 4, p. 363-375, 1981. http://dx.doi.org/10.2307/1268226

KHURI, A.I.; CORNELL, J.A. Response Surfaces: Designs and Analyses. New York: Marcel Dekker Inc., 1987.

KIM, K.J.; LIN, D.K.J. Optimization of multiple responses considering both location and dispersion effects. European Journal of Operational Research, v. 169, p. 133–145, 2006. http://dx.doi.org/10.1016/j.ejor.2004.06.020

KÖKSOY, O.; YALCINOZ, T. Mean square error criteria to multiresponse process optimization by a new genetic algorithm. Applied Mathematics and Computation, v. 175, n. 2, p. 1657-1674, 2006. http://dx.doi.org/10.1016/j.amc.2005.09.011

LASDON, L. S.; WAREN, A. D.; RATNER, M. W. GRG2 Users’s Guide University ofTexas at Austin, 1980.

MELO, A.; CATEN, C.S.T.; SANT’ANNA, A.M.O. Otimização dos parâmetros de usinagem na manufatura do ferro fundido. Revista Produção Online, v.13, n. 1, p. 375-388, 2013. http://dx.doi.org/10.14488/1676-1901.v13i1.1200.

MENDES, J. M. A comparative study of crossover operators for genetic algorithms to solve the job shop scheduling problem. Wseas Transactions on Computers, v. 12, n. 4, p. 164-173, 2013.

MONTGOMERY, C.D.; RUNGER, G.C. Estatística aplicada e probabilidade para engenheiros, 5 Ed., LTC, 2012.

PAULING; L. The Nature of the Chemical Bond. Ithaca: Cornell University Press, 1960.

RECHENBERG, I. Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der biologischen evolution, Stuttgart: Frommann-Holzboog, 1973.

REEVES, C. Genetic algorithms. In: Handbook of Metaheuristics. New York: Springer, 2003.

ROSEN, J. B. The gradient projection method for nonlinear programming. Part I: Linear constraints. Journal of the Society for Industrial and Applied Mathematics, v. 8, n. 1, p. 181-217, 1960.

SUDENG, S.; WATTANAPONGSAKORN, N. Post Pareto-optimal pruning algorithm for multiple objective optimization using specific extended angle dominance. Engineering Applications of Artificial Intelligence, v. 38, p. 221-236, 2015.

http://dx.doi.org/10.1016/j.engappai.2014.10.020

TORRES JÚNIOR, N.; QUININO, R. C. O jogo da catapulta para compreender o planejamento e análise de experimentos: proposta de uma abordagem lúdica de ensino. Revista Produção Online, v. 14, n. 3, p. 939-971, 2014.

http://dx.doi.org/10.14488/1676-1901.v14i3.1576

TSAI, C.; TONG, L.; WANG, C. Optimization of Multiple Responses Using Data Envelopment Analysis and Response Surface Methodology. Tamkang Journal of Science and Engineering, v. 13, n. 2, p. 197-203, 2010.

VELDHUIZEN, D.A.V.; LAMONT, G.B. Multiobjective evolutionary algorithms: analyzing the state-of-the-Art. In: Evolutionary Computation, Cambridge: MIT Press, v. 8, n. 2, p. 125-147, 2000.

VINING G. A compromise approach to multiresponse optimization. Journal of Quality Technology, v. 30, n. 4, p. 309-313, 1998.

WAREN, A. D.; LASDON, L. S. The status of nonlinear programming software. Operations Research, v. 27, n. 3, p. 431-56, 1979.

WEISE, T., Global Optimization Algorithms – Theory and Application, 2ª ed, (2009). Disponível em: http://www.it-weise.de/projects/book.pdf=> acessado em 18 mar. 2015.

WOLFE, P. The Reduced Gradient Method. In: Recent Advances in Mathematical Programming. New York: R. L. Graves and P. Wolfe, 1963.

Publicado

14-06-2017

Como Citar

Gomes, F. M., Pereira, F. M., Marins, F. A. S., & Silva, M. B. (2017). Estudo comparativo entre os métodos gradiente reduzido generalizado e algoritmo genético em otimização com múltiplas respostas. Revista Produção Online, 17(2), 592–619. https://doi.org/10.14488/1676-1901.v17i2.2566

Edição

Seção

Artigos